Interfaces Hombres - Máquina

Lissia Barrios, Iris Galeano
“Universidad Católica Nuestra Señora de la Asunción”
Facultad de Ciencias y Tecnología

Teoría y Aplicación de la Informática 2
{lissiiita@gmail.com, irisariana05@hotmail.com}
2014

Resumen
La interfaz de usuario es el medio de comunicación entre éste y una máquina, computadora o dispositivo en general. Su objetivo es que el usuario pueda suministrarle información y así operarlo, por lo que debe ser fácil de entender y accionar. En la actualidad existen una diversidad de interfaces, algunas con características similares y otras muy particulares, cada una con sus propias funcionalidades. El documento abarcará un gran número de interfaces así como de las tecnologías actuales en el mercado, su evolución, impacto (positivo y negativo) y la forma de interacción actual y futura del hombre con estas máquinas.

Key words: HMI, interacción, Domótica, realidad virtual, realidad aumentada, interfaz haptica, lenguaje natural, bci, eeg, rfid, geolocalización, google glass, wearable computing, wii, kinect, playstation, smart watch, redes sociales, privacidad, seguridad, sociedad, educación, medicina, entretenimiento.
Índice general

Abstract. Key words ... 1
Lissia Barrios, Iris Galeano
1. Siglas ... 6
2. Introducción ... 6
3. ¿Qué es una interfaz hombre - máquina? ... 7
4. Realidad Virtual y Realidad Aumentada ... 7
4.1. Realidad Virtual ... 7
 Las tres Ies de la Realidad Virtual .. 8
 Clasificación de los mundos virtuales .. 8
 Dispositivos actuales ... 9
 Aplicaciones ... 11
 Moratoria Psicosocial en la realidad virtual 14
4.2. Realidad Aumentada ... 15
 Aplicaciones ... 16
 Sexto Sentido ... 24
4.3. Análisis tecnológico y personal-social ... 28
4.4. Futuro de la Realidad Virtual y Aumentada ... 29
5. RFID y Geolocalización ... 30
5.1. RFID ... 30
 Tres elementos para la implementación [6]. 30
 EPC ... 30
 Compatibilidad con NFC ... 31
5.2. Geolocalización ... 32
 GPS ... 34
 Geoetiquetado ... 34
5.3. Análisis Tecnológico y Social ... 35
6. Wearable Computing ... 36
6.1. Google Glass ... 37
6.2. Smart Watches ... 38
6.3. Misfit Shine ... 38
6.4. Samsung Gear Circle y Samsung Gear S ... 38
6.5. Análisis Tecnológico Social ... 39
7. Interfaces hápticas ... 40
7.1. Interfaces y dispositivos ... 41
 Interfaz táctil ... 41
 Interfaces de realimentación de fuerza .. 42
7.2. Otras formas de interfaces táctiles ... 44
 Interfaz táctil de Usuario ... 44
 Multitáctil ... 44
 Skinput: Pantalla táctil en la piel .. 44
 Myo Band ... 45
7.3. Aplicaciones .. 46
7.4. Análisis tecnológico y social. Futuro 47
7.5. Cine Cuatri-dimensional 48
8. Interfaces con Consolas 49
 8.1. Wii ... 49
 8.2. PS Move .. 50
 8.3. Kinect ... 50
 8.4. Análisis Tecnológico y Social 52
 9.1. Brain Computer Interface 53
 9.2. EEG ... 54
 9.3. Emotiv Systems .. 57
 9.4. Análisis Tecnológico y Social 58
10. Interfaces de Lenguaje Natural 59
 10.1. Dificultades del reconocimiento 60
 10.2. Utilidades y Aplicaciones 61
 10.3. Procesamiento de lenguajes naturales 61
 Dificultades en el procesamiento de lenguajes naturales 61
 Aplicaciones ... 62
 10.4. Análisis tecnológico y social. Futuro 64
11. Domótica .. 65
 11.1. Aplicaciones .. 68
 11.2. Dispositivos en el mercado 72
 11.3. Análisis tecnológico y social 74
 11.4. Futuro de la domótica 75
12. Conclusión ... 76
13. Anexos .. 76
 13.1. Seguridad ... 76
 13.2. Ciencia tecnología y Sociedad 78

Índice de figuras

1. Las 3 Ies de la Realidad Virtual. Inmersión, Interacción, Imaginación . 9
2. Samsung Gear VR. .. 10
3. Oculus Rift ... 10
4. Project Morpheus ... 10
5. Gafas de Realidad Virtual para entrenamiento de soldados 12
6. Tratamiento a través de la Realidad Virtual para controlar la ansiedad que le generan los insectos reales [16]. 13
7. simulación de intervenciones quirúrgicas 13
8. Capacitación del personal de una planta a través de la simulación 14
11. colAR ... 20
12. Diggs Detective Privado. .. 20
13. Montaje de un motor de automóvil. Sobre la imagen real del automóvil se superpone información adicional sobre las piezas del mismo. .. 22
15. Turismo. Obtener información sobre un lugar particular 23
16. Hardware necesario para el funcionamiento de Sexto Sentido. 25
17. Izq. Zoom del Mapa por medio de gestos. Der. Teclado numérico en la palma de la mano para realizar llamadas telefónicas. 26
18. Smart Tag de Sony. .. 32
19. Ejemplo de uso del Smart Tag. .. 32
20. Sextante utilizado para realizar medidas de coordenadas 33
21. Dispositivo GPS. ... 34
22. Google Glass. ... 37
23. Algunos relojes inteligentes más conocidos. 38
24. Dispositivo Misfit Shine puesto sobre una camiseta. 39
25. Dispositivo Samsung Galaxy Gear Circle. 40
26. Guantes de CyberGlove con CyberTouch. 42
27. CyberGrasp Exoskeleton. ... 42
28. Phantom. Dispositivo del tipo interactuador puntual. 43
29. Interfaz táctil de usuario. .. 44
30. Pantalla Multitáctil. .. 44
31. Skinput. Proyección e interacción directamente sobre la piel. 45
32. Myo Band. ... 46
33. Visión general de una estructura de cine4D. 49
34. Mandos de PS Move y Wii. ... 51
35. Puntos proyectados por los sensores kinect vistos con visión nocturna. .. 52
36. Puntos proyectados por los sensores kinect vistos con visión nocturna en una sala entera. .. 52
37. Mujer controlando brazo robótico, sirviéndose a sí misma después de haber pasado 15 años con parálisis. 54
38. Interfaz neural, chip para conectar en el cerebro. 55
39. Una de las interfaces no invasivas. 55
40. Sensores no invasivos. ... 56
41. Dispositivo Emotiv EPOC ... 57
42. Imagen producida por un paciente de ALS. 58
43. Respuesta a preguntas. .. 63
44. Respuesta a preguntas. .. 63
45. Conversación usuario-agente. La interacción se realiza por medio del lenguaje natural [15]. .. 65
46. Visión global de una vivienda domótica 68
47. Control domótico de iluminación 69
48. Gestión multimedia ... 70
49. Portero al teléfono. ... 70
50. Cerraduras digitales. Si la huella está memorizada en el sistema y tiene permiso, la puerta se abre. .. 71
51. Whirlpool Fireplace (CES 2013). ... 73
52. Lockitron... 73
53. Dacor Discovery IQ... 73
54. Portada del juego Watch Dogs lanzada en el 2014. Universo en el que todo está conectado. 77
1. Siglas

- RA: Realidad Aumentada.
- RV: Realidad Virtual.
- RFID: Identificación por Radio Frecuencia.
- EPC: Código Electrónico de Producto.
- GPS: Sistema de Posicionamiento Global.
- NFC: Near Field Communication.
- EEG: Electroencefalograma.
- BCI: Brain Computer Interface.
- CTS: Ciencia y Tecnología en la Sociedad.
- FDA: Food and Drugs Administration.
- PS: PlayStation.
- CCTV: Circuito Cerrado de Televisión.
- QHD: Quad HD.

2. Introducción

¿Qué sería de nosotros si en este mismo instante, de golpe, nos despojaran de todas las tecnologías que nos rodean? ¿Qué haríamos si desaparecieran nuestros teléfonos móviles, computadoras portátiles, televisor, microondas y demás dispositivos? Estas preguntas son difíciles de contestar, pertenecemos a una generación donde la tecnología forma parte de nuestra existencia de forma casi natural. Sin embargo, tan sólo unas décadas atrás el mundo funcionaba de una manera totalmente distinta. Las herramientas de trabajo eran el lápiz y el papel, el acceso a la información y al entretenimiento era posible gracias a la radio y al televisor, la investigación se realizaba en bibliotecas, la comunicación era cara a cara, por teléfono o cartas. Sin embargo, hoy tan sólo son una de las formas, de las miles que existen, de acceder a la información, comunicarnos y realizar las tareas cotidianas.

La ciencia y la técnica se desarrollaron tan rápido que las tecnologías están presentes en todos los ámbitos y niveles de la sociedad. Han generado cambios en la economía, en la educación, en la salud, en la manera en cómo nos relacionamos con los demás pero principalmente han modificado al hombre, en su forma de pensar, de vivir y de sentir al mundo que le rodea. El presente trabajo ahonda cada uno de los temas recién descriptos a través del análisis de las interfaces existentes, que le permiten al hombre la interacción con dichas tecnologías.

Las interfaces también han evolucionado, de los intérpretes de comandos se pasó a las interfaces gráficas hasta llegar a las interfaces táctiles -uno de los canales de comunicación más utilizado actualmente-, pero como la tecnología es sinónimo de innovación, cada día surgen nuevas formas de interacción con las máquinas que tienen como objetivo facilitar la vida de los usuarios a la vez de
hacer más ameno el manejo de los dispositivos. A continuación se presentarán un conjunto de interfaces y tecnologías presentes en la actualidad, resultando el uso que el hombre le ha dado y el impacto generado en muchas áreas de aplicación.

3. ¿Qué es una interfaz hombre - máquina?

Los interfaces Hombre-Máquina también conocidas como HMI por sus siglas en inglés, Human Machine Interface, proporcionan un interfaz de control y visualización entre un ser humano y un proceso, máquina, aplicación o dispositivo. Permiten controlar, monitorizar, diagnosticar y gestionar nuestra aplicación.

Una interfaz hombre - máquina consta de 2 componentes:

1. **Entrada**: Mediante la cual el usuario humano comunicará a la máquina qué hacer, qué quiere que ésta haga o configurarla en caso de ser necesario.
2. **Salida**: Mediante el cual la máquina mantendrá actualizado al usuario del progreso de los comandos ejecutados, o permitirá al usuario ejecutar comandos en un espacio físico. El ejemplo más conocido es una pantalla para mostrar la información.

Una interfaz se caracteriza por ser funcional, accesible, agradable de usar y lógica. Conseguir esto requiere un gran trabajo pues se necesita de un profundo conocimiento de cómo nosotros interactuamos con nuestro medio ambiente y un conocimiento de la psicología del diseño de interfaces de una manera que sea accesible a un amplio espectro de los seres humanos.

4. Realidad Virtual y Realidad Aumentada

4.1. Realidad Virtual

La realidad virtual permite la creación de mundos virtuales -entornos artificiales semejantes a la vida real- donde el hombre interactúa con la máquina. Se trata de “una tecnología de visualización y control que puede rodear a una persona con un ambiente virtual interactivo generado o mediado por el ordenador. Mediante dispositivos de visualización montados sobre la cabeza y que siguen sus movimientos, y otros dispositivos que registran los gestos y sonido en 3D, se crea un mundo artificial de experiencia visual y auditiva, se crea un lugar artificial que puede ser explorado y que contiene objetos virtuales que pueden ser manipulados” [49].

Hablar de una verdadera realidad virtual supone poder interactuar con este mundo virtual con todos los sentidos que poseemos, pero en la actualidad la interacción ocurre normalmente a través de la vista y de los oídos por la alta complejidad y costo que supone incorporar los otros sentidos. Sin embargo más
adelante veremos que se han desarrollado tecnologías que constituyen una interfaz háptica de modo a hacer cada vez más real la inmersión en entornos virtuales.

Objetivo: crear, almacenar y simular un mundo alternativo, modelar objetos en él, definir relaciones entre ellos y la forma en la que interaccionan, para que el usuario pueda más tarde percibirlo.

Las tres Ies de la Realidad Virtual.

1. **Inmersión.** El usuario pierde contacto con la realidad al percibir únicamente los estímulos del mundo virtual [70]. La inmersión también hace alusión a la presencia, da la sensación de estar en dicho mundo pues el usuario no lo observa desde afuera sino que forma parte de él.

2. **Interacción.** El usuario interactúa con el mundo virtual a través de dispositivos de entrada, de forma que modifica cosas en él y recibe la respuesta a través de sus sentidos. El objetivo último es la respuesta inmediata del mundo virtual (tiempo virtual = tiempo real) [70]. Existen dos aspectos únicos de interacción en un mundo virtual. El primero de ellos es la navegación, que es la habilidad del usuario para moverse independientemente alrededor del mundo, puede ser volar o no, caminar, nadar, etcétera. El otro punto importante de la navegación es el posicionamiento del punto de vista del usuario. El usuario se puede mirar a sí mismo (a través de los ojos de alguien más), o puede moverse a través de cualquier aplicación observando desde varios puntos de vista [13].

 El otro aspecto de la interacción es la dinámica del ambiente, que no son más que las reglas de cómo los componentes del mundo virtual interactúan con el usuario para intercambiar energía o información [13].

3. **Imaginación.** A través del mundo virtual podemos concebir y percibir realidades que no existen [70]. En aquellos entornos virtuales donde no se apunta directamente a los sentidos (visual, auditivo, táctil), la imaginación es la clave para que el usuario experimente la realidad virtual.

Clasificación de los mundos virtuales. A continuación se describen los 3 tipos de mundos virtuales que pueden ser recreados, éstos pueden existir por separado o mezclarse entre sí [70].

1. **Mundo muerto.** No hay interacción entre el sistema y el usuario ni movimiento de los objetos. El usuario percibe un mundo virtual a través de los sentidos pero no puede actuar sobre él, sólo explorarlo. Por ejemplo, las animaciones tradicionales de imágenes precalculadas.

2. **Mundo real.** Los objetos poseen los atributos correspondientes a su equivalencia real, de manera que podemos interactuar con ellos tal y como hacemos en el mundo real. Si miramos un reloj, éste marca la hora; si arrastramos un lápiz por el papel, escribimos; si abrimos un grifo, sale agua. Por ejemplo, un simulador de conducción dentro de una ciudad.
3. Mundo fantástico. En él podemos realizar tareas irreales, como volar o atravesar paredes, abriéndonos más posibilidades de exploración del mundo. Por ejemplo, una exploración de un naufragio.

Dispositivos actuales. Algunos de los dispositivos de realidad virtual disponibles actualmente en el mercado son los siguientes:

- **Samsung Gear VR**: Gafas de realidad virtual pensadas para su uso junto al Samsung Galaxy Note 4. Tiene unas medidas de 90 milímetros de alto por 198 de ancho y 116 de grosor. Disponen de un espacio en donde acoplar el Samsung Galaxy Note 4, que pone su pantalla de 5,7 pulgadas con resolución QHD a disposición de los usuarios, ángulo de visión de 96 grados. La idea de las Gear VR es que contenidos como películas, videojuegos o materiales educativos se transformen, de manera que se pueda interactuar con ellos con movimientos en 360 grados. En cuanto a la forma de interacción con las Gear VR, las gafas de Samsung incorporan un botón para validar acciones y un pad táctil con el que poder navegar por los distintos menús. Además, botones para el volumen también tienen su espacio en uno de los laterales de estas gafas de realidad virtual [53].

- **Oculus Rift**: Es un casco de realidad virtual que está siendo desarrollado por Oculus VR\(^1\). Utiliza tecnología de seguimiento personalizado para ofrecer ultra baja latencia de seguimiento de la cabeza de 360\(^\circ\). Crea una visión 3D estereoscópica con una excelente profundidad, escala y paralaje. A diferencia de 3D en un televisor o en una película, esto se consigue mediante la presentación de imágenes únicas y paralelas para cada ojo. Ésta es la misma forma en que los ojos perciben las imágenes en el mundo real, creando una experiencia mucho más natural y cómoda [41].

\(^1\) Compañía que desarrolla tecnología de realidad virtual. Fue adquirida por Facebook en el año 2014.
• **Project Morpheus**: Es un prototipo de sistema de realidad virtual de Sony Computer Entertainment. El actual prototipo de Project Morpheus ofrece un dispositivo para la cabeza con una resolución de 1080p y un campo de visión de 90 grados. Los sensores de acelerómetro y giroscopio incorporados en el dispositivo así como la PlayStation Camera, siguen de modo preciso la orientación de la cabeza del usuario y sus movimientos, de tal modo que al tiempo que se gira la cabeza, la imagen del mundo virtual gira con el usuario de un modo intuitivo y a tiempo real. También ofrece tecnología de audio en 3D que recrea los sonidos estereoscópicos en todas las direcciones y que cambia a tiempo real dependiendo de la orientación de la cabeza [61].

![Project Morpheus](image)

Figura 2. Samsung Gear VR.
Figura 3. Oculus Rift.

Figura 4. Project Morpheus
Aplicaciones.

1. Ejército y Fuerzas de seguridad

Simuladores de vuelo: sistemas muy sofisticados y costosos que incorporan todo tipo de interfaces para simular las situaciones reales dentro de un avión, así como las distintas maniobras [70].

Entrenamiento de soldados: por medio de estos entornos virtuales es posible la creación de estrategias así como planes de guerra junto a su simulación pero sin la pérdida de vidas humanas. El punto de vista es siempre en primera persona, con esta se simulan perfectamente situaciones reales que pueden ocurrir en el campo de combate. También se facilita el aprendizaje de aviones de combate (mencionado anteriormente) o de vehículos especiales.

DARPA\(^2\) ya tiene sus propias gafas de realidad virtual para sus soldados totalmente funcionales que los convierte en Terminator. De forma similar los cascos de los aviones de combate añaden un HUD a la visión de los efectivos desplegados en tierra resaltando elementos de campo como enemigos, aliados o cualquier otro punto de interés, dando una ventaja añadida a las tropas desplegadas en combate, y a diferencia de Google Glass, que proyecta las imágenes sobre el iris, estas gafas de DARPA se comportan como una extensión virtual de la vista del soldado evitando la fatiga ocular y aumentando la visibilidad de los elementos. Aunque más aparatosas que las de Google, la pantalla holográfica de estas gafas es mucho más natural [62].

2. Medicina

Psicología: para curar las fobias y los traumas. En la Virtuoterapia, cualquiera puede enfrentarse a sus temores sentado cómodamente, desde el consultorio. El sistema de realidad virtual está compuesto por un casco, unos auriculares y un sillón colocado sobre una plataforma móvil, en el que el paciente se “enfrenta” a una simulación tridimensional de la situación que le produce angustia [70].

Otro uso de la RV en esta área ha sido para el diagnóstico del TDAH, Trastorno por Déficit de Atención con Hiperactividad\(^3\). AULA es un novedoso test basado en la realidad virtual desarrollado para ofrecer este diagnóstico. Ha sido creado por la empresa Nesplora y el equipo de Neuropediatría de la Clínica Universidad de Navarra. Funciona a través de unas gafas 3D, el test introduce al paciente en un aula virtual, entre alumnos y frente a un profesor. Sentado en su pupitre, el niño va recibiendo estímulos auditivos (a

\(^2\) Agencia de Proyectos de Investigación Avanzados de Defensa.

\(^3\) Es un síndrome conductual. Se trata de un trastorno del comportamiento caracterizado por distracción moderada a grave, períodos de atención breve, inquietud motora, inestabilidad emocional y conductas impulsivas.
Figura 5. Gafas de Realidad Virtual para entrenamiento de soldados

través de unos auriculares) y estímulos visuales que aparecen en la pizarra virtual. Ante estos estímulos, él debe responder con un pulsador a las instrucciones del profesor virtual. Los resultados de los diferentes ejercicios son procesados por el programa informático que ofrece, en sólo 20 minutos, un informe completo para el especialista [51].

Simulación de intervenciones quirúrgicas: permite a profesionales y más aún a estudiantes médicos realizar tantas prácticas como sean necesarias sin exponer a un humano con el fin de ganar experiencia.

El empleo de técnicas de overlays (la sobreposición de imágenes de estructuras ideales sobre las estructuras corporales actuales) puede ser de gran valor en la cirugía general y cerebral, donde se requiere un alto grado de destreza y capacidad de reconocimiento de los órganos apropiados [70].

Combinación de imágenes proporcionadas por otros escáneres y unirlas para presentar los detalles, utilizando la tecnología de imágenes médicas. Esto ayuda a los doctores a diagnosticar problemas sin necesidad de intervención quirúrgica [50]. Así también serviría para poner a prueba hipótesis médicas sin dañar objetos, entornos o arriesgar vidas humanas.

3. Arquitectura

Arquitectura Virtual: sirve para generar espacios que solamente se pueden visitar digitalmente, entre los que destacan los Museos Virtuales.
Figura 6. Tratamiento a través de la Realidad Virtual para controlar la ansiedad que le generan los insectos reales [16].

Figura 7. simulación de intervenciones quirúrgicas

Patrimonio Arquitectónico Virtual: que se orienta al rescate y recuperación, en el medio virtual, de aquellas edificaciones desaparecidas o en proceso de serlo. Con esto también se podrían entender las razones de la destrucción de dichas edificaciones para así evitarlas en el futuro.

Diseño virtual: además de hacer los diseños tradicionales como planos y maquetas, elaboran un modelo tridimensional interactivo, donde sus clientes pueden contemplar de una manera más “real” los diseños e incluso adentrarse en estos edificios o casas y recorrerlos libremente, teniendo así una visión más clara de las ideas que se tratan de expresar [50].

4. **Educación y capacitación al personal**

Museos/planetarios: Estos centros realizan exposiciones virtuales donde se pueden hacer recorridos en templos antiguos, palacios, galaxias, aprender de diversas áreas de conocimiento, entre otras, otro enfoque consiste en experimentar visitas virtuales a lugares o templos antiguos que por alguna razón no están disponibles al usuario (destrucción, restauración) [70].

Actividades que requieran coordinación motora: permite el entrenamiento del personal de una industria o una planta sobre todo en aquellas
actividades que son consideradas críticas, evitando daños a equipos y personas. También es posible evaluar los movimientos para verificar la presión o fuerza aplicada, por tanto podría utilizarse para aprender a manejar un automóvil, ejecutar instrumentos, etc.

Figura 8. Capacitación del personal de una planta a través de la simulación

5. Ocio

Videojuegos: Principal impulsor del desarrollo de la realidad virtual, este es el área de mayor aplicación de la misma ya que permite disfrutar de los videojuegos en 3D desde la comodidad del hogar.

6. Meteorología

Creación de modelos que simulen los efectos del clima previstos: Los meteorólogos pueden utilizar varios programas de realidad virtual para procesar la información obtenida de los satélites y antenas parabólicas, y crear dichos modelos. Esta tecnología también puede analizar los patrones meteorológicos anteriores con condiciones similares a fin de determinar mejor los resultados futuros de los eventos atmosféricos [50].

Moratoria Psicosocial en la realidad virtual. La realidad virtual genera constantemente nuevas oportunidades en diversos entornos los cuales posibilitan la reconstrucción de la propia identidad. Los entornos virtuales propician espacios de “moratoria” para la reconstrucción de la identidad sustentada en la creación de más de un yo, lo que se conoce como moratoria psicosocial. Equivale a la idea de “tiempo muerto” en la búsqueda de la identidad, al constituir un momento de intensa interacción con el entorno, ya sean personas, objetos, sentimientos, etc. aplazando las posibles consecuencias, convirtiéndose así en una especie de “campo de pruebas” [40] en la psicología.
El mundo virtual ofrece al usuario interacción a tiempo real con el resto de los usuarios, la posibilidad de anonimato, a través del uso del alias, que permite la utilización de identidades ficticias, y la posibilidad de construir nuevos personajes, que desempeñen roles distintos a los que llevamos a cabo en la vida cotidiana. La posibilidad de interacción a tiempo real, pero no de forma espacial, así como la seguridad que provoca el anonimato, jugarían a favor del aplazamiento de consecuencias, al otorgar seguridad al usuario virtual, mientras que la construcción de nuevos roles y personajes dan lugar a la experimentación y la prueba de nuevos sentimientos, habilidades, comportamientos etc. que no se encuentran presentes en el día a día, y pueden ser experimentados en el contexto del mundo virtual.

En este ámbito, se nos ofrece la posibilidad de entrar en una realidad diferente, la realidad virtual, y desarrollar nuevos estadios de dominio, es decir, practicar con atributos que aún no dominamos [40]. Por ejemplo, cuando un hombre con fama de rudo entra en un mundo virtual y crea un personaje femenino, cuenta con ciertas condiciones y herramientas para desarrollar su lado empático, cariñoso y amable, (los cuales le serían más complicados de desarrollar en su vida real), gracias a la seguridad que le otorga su personaje ficticio, el cual le permite interactuar con otros usuarios desde una posición de mayor desinhibición que en las situaciones cotidianas, así entonces cualquier persona con una determinada personalidad y carácter puede desarrollar un lado suyo que, en el día a día considera imposible o que le genera problemas de desenvolvimiento.

La moratoria psicosocial en los entornos virtuales abre un potencial espacio terapéutico para la posible resolución de ciertos problemas psicológicos. Ya que gran parte de estos problemas pueden entenderse como provocados, influidos o mantenidos por una falta o carencia de habilidades y/o recursos para hacer frente a una situación concreta por la que el sujeto está pasando, la moratoria proporciona un escenario donde resulta más sencilla la experimentación con personas, sentimientos y comportamientos, es decir la construcción de nuevos aspectos de la identidad, para integrarlos como nuevas herramientas con las que hacer frente a las circunstancias en las que se da el problema. Como condiciones para que estos efectos terapéuticos se produzcan, la persona debe experimentar con aquellas habilidades útiles para la resolución de su problema, y además ser capaz de integrar esas mismas habilidades a la vida cotidiana, traspasándolas del plano virtual al plano real. Por ejemplo, una persona con carencia de habilidades sociales que le provoca una elevada timidez, percibida como problema, puede desde la seguridad de su personaje, experimentar con nuevas formas de comunicación interpersonal para desarrollar esas habilidades e integrar nuevas estrategias comunicativas en su día a día, que le ayuden a superar la timidez [40].

4.2. Realidad Aumentada

En el apartado anterior se explicaban todos los conceptos detrás de la realidad virtual, decíamos que la realidad virtual crea un mundo netamente virtual
para el usuario, a quien se lo aisla de lo real. Un paso más allá se encuentra la Realidad Aumentada, que a diferencia de la realidad virtual, no genera un mundo netamente virtual sino que añade componentes virtuales a la realidad existente creando así una realidad mixta en tiempo real, es decir sobreimprime los datos informáticos al mundo real.

Con la ayuda de la tecnología (por ejemplo, añadiendo la visión por computador y reconocimiento de objetos) la información sobre el mundo real alrededor del usuario se convierte en interactiva y digital. La información artificial sobre el medio ambiente y los objetos pueden ser almacenada y recuperada como una capa de información en la parte superior de la visión del mundo real [43]. Así por ejemplo podemos visualizar toda la información referente a un libro con solo mirar la portada del mismo o la representación en 3D de una casa a partir de un plano.

La Realidad Aumentada está presente en casi todo el mundo, puede aplicarse en prácticamente cualquier campo, medicina, publicidad, arquitectura, ingeniería, fabricación y reparación, entre muchas otras que se irán desarrollando a lo largo de este apartado. Actualmente más y más empresas introducen en sus proyectos a la realidad aumentada con el fin de adaptarse a las tendencias del mercado consiguiendo así una mayor comunicación con sus clientes. Para medios del 2013 aproximadamente los costos de elaboración habían bajado a más de la mitad respecto a hace 5 años, las opciones para crear son infinitas, y aunque puede ser un poco costoso, en verdad vale la pena explorar la opción de introducir realidad virtual para brindar nuevas experiencias a los consumidores [30].

La explosión de los smartphones es la que realmente dio sentido a la RA, porque nos permite llevar en el bolsillo, en la cartera, en la mano un dispositivo con gran capacidad para mostrar información. Como se verá enseguida con las aplicaciones de la RA, el acceso a la información es inmediato, nuestra percepción se abre logrando que nuestro contexto se haga uno con nosotros.

Aplicaciones.

1. Educación:
Una de las primeras aplicaciones en formación es un sistema de realidad aumentada para aprender a soldar sin riesgos y realizando todas las horas de prácticas necesarias sin coste añadido. Sin embargo una de sus mayores aplicaciones es en museos, exhibiciones, parques de atracciones temáticos. Estos lugares aprovechan las conexiones wireless para mostrar información sobre objetos o lugares favoreciendo la interacción entre los visitantes y el objeto cultural de una forma atractiva a la vez que didáctica. Algunos museos que los implementan son el museo de Mataró, el “Street Museum”, el Museo de Anne Frank [43].
Cada vez más la Realidad Aumentada está siendo aplicada en diversas áreas de conocimiento gracias a su capacidad de insertar objetos virtuales en el espacio real, esto permite que el aprendizaje del usuario sea más visual e interactivo, es posible visualizar un objeto a partir de un objeto físico desde muchas perspectivas y con mucho más detalles de lo que por ejemplo ofrecería un libro. A continuación se exponen varias propuestas del uso de esta tecnología en educación presentadas en el evento “Augmented Reality Education”, organizado por Augmented Reality Barcelona, un grupo creado para dar a conocer, incentivar y promover el uso de esta tecnología en todos los ámbitos de la sociedad.

a) **Ninus:** La idea de Ninus surgió ante la necesidad de acercar la tecnología a niños de entre 3 y 5 años, cuya referencia espacial se sitúa al nivel del suelo y para quienes, debido a su altura, es complicado manejar pizarras digitales. Un proyector junto con una Kinect son los encargados de recrear un escenario 2D sobre el suelo, una zona donde los niños tienen que entrar y mantenerse en pie para realizar las actividades.

Su oferta de contenidos, controlados por el docente a través de una tablet, abarca temas curriculares de la educación primaria en los que se desarrolla la psicomotricidad de los niños y su carácter colaborativo en las actividades en grupo, fomentando a la vez su control del lenguaje y el dominio de las letras, números, formas, colores, etc.

Sensibilizados también con aquellos niños que tuvieran algún tipo de dificultad cognitiva, sus actividades son adaptables en complejidad. Cuenta también con ejercicios diseñados especialmente para ayudar a niños con deficiencia auditiva [55].

b) **AR-Books:** es una editorial de libros de realidad aumentada que añade tecnología y tradición con el objetivo de reinventar la forma de leer los libros, complementando las ilustraciones y fotografías con una experiencia tridimensional.

Estos libros son tanto didácticos como narrativos, y en ellos el hilo conductor es el empleo de la realidad aumentada con el fin de enriquecer su lectura y comprensión. En su propuesta encontramos temáticas como la anatomía, astronomía, dibujo técnico, tecnología, maquillaje, etc [55].

c) **Talentum Schools:** es una iniciativa educativa de Telefónica que pretende fomentar la creación de tecnología en edades tempranas a través de talleres gratuitos impartidos en tiendas Movistar. En ellos, niños a partir de 4 años y jóvenes de hasta 18 aprenden conceptos de programación con herramientas como la realidad aumentada o el lenguaje de programación Scratch del MIT, robótica con el robot Atti desarrollado por SK Telecom, o creación de aplicaciones móviles Android con App
Su propuesta en realidad aumentada, desarrollada por Qualcomm y basada en la tecnología Vuforia, permite que niños de entre 5 y 7 años aprendan los conceptos básicos de programación y puedan crear sus propias historias.

Para ello, los niños utilizan un entorno de programación en el que pueden asignar una serie de acciones, ordenadas en secuencias, a cada uno de los botones con los que posteriormente controlarán a su personaje virtual, que aparecerá sobre una cartulina.

Asimismo, los niños pueden controlar a este personaje con los botones presentes en la pantalla de la tablet o tocando físicamente los que se encuentran sobre el papel. Con esta actividad los niños resuelven retos en los que comienzan a pensar e interiorizar sus primeros conceptos y comandos de programación.

Otra de las aplicaciones que actualmente se han extendido en el mundo es la instalada en teléfonos celulares y que permite traducir las palabras que aparecen en una imagen, su nombre es World Lens. Basta con tomar una fotografía a cualquier texto desconocido, sea un anuncio, un menú, un volante, etc y se obtiene una traducción instantánea sobre el mismo objeto. El proceso es muy sencillo: el software identifica las letras que aparecen en
el objeto y busca la palabra en el diccionario. Una vez que encuentra la traducción, la dibuja en lugar de la palabra original. La aplicación es ideal para quienes viajan mucho y necesitan conocer de manera rápida el significado de alguna palabra. Por el momento, programa ofrece traducción inglés - español y español - inglés, aunque sus creadores Otavio Good y John DeWeese señalaron que el paso siguiente es la traducción en otros idiomas, como el francés, el italiano o el portugués [43].

2. Cirugía:
La aplicación de realidad aumentada en operaciones permite al cirujano superponer datos visuales como por ejemplo termografías o la delimitación de los bordes limpios de un tumor, invisibles a simple vista, minimizando el impacto de la cirugía [43].

En otras de las aplicaciones, la realidad aumentada permitió a un cirujano intervenir a un paciente a distancia, éste pudo introducir de forma virtual sus manos y herramientas en el campo quirúrgico, de modo que el cirujano presencial las viera como si estuviera allí mismo. El cirujano ortopédico de la UAB, Brent Ponce, realizó una cirugía de reemplazo de hombro el 12 de septiembre en el Hospital UAB Highlands, en Birmingham. Al otro lado, interactuando con Ponce, estaba Phani Dantuluri, desde su oficina en Atlanta.

Ponce llevaba puestas las Google Glass durante la operación. La cámara incorporada transmitía la imagen del campo quirúrgico a Dantuluri. Vipaar permitía a Dantuluri ver exactamente lo que veía Ponce en la sala de operaciones, e introducir las manos o instrumentos en el campo quirúrgico virtual. Al mismo tiempo, Ponce veía las manos y los instrumentos de Dantuluri en la pantalla de sus gafas, mezclados con su propio campo de visión [56].

3. Entretenimiento:
Teniendo en cuenta que el mercado de los juegos mueve unos 30.000 millones de dólares al año en los Estados Unidos [43], es natural que el número de empresas que apuestan por la realidad aumentada en este campo sea mayor ya que existe una amplia gama de posibilidades de juego que cubrir, distintos escenarios, distintas formas de interacción, siempre basándose en la edad, sexo e intereses de los jugadores. De nuevo, la aparición del smartphone hace posible que hoy los jugadores puedan experimentar la realidad aumentada a través de su cámara presentando a los juegos de una manera innovadora e interactiva. A continuación se presenta una lista de juegos de realidad aumentada que se encuentran disponibles en el Google Play.

a) NerdHerder. Este juego está desarrollado por el centro de investigación del Georgia Tech, elGame play está orientado a un juego de tipo puzzle. Para poder usar este juego es necesario imprimir un marcador el cual podrá ser descargado desde ael.gatech.edu/nerdherder/.
b) **Kazooloo.** Es un juego muy sencillo en el cual el jugador debe enfrentar a un dragón. También requiere imprimir un marcador para poder jugarlo.

c) **colAR.** Esta aplicación no es propiamente un juego, aunque es una aplicación bastante entretenida para los niños. colAR permite descargar diversos láminas para colorear desde su sitio disponible en colarapp.com. Una vez impreso y coloreado el dibujo se utiliza la aplicación de colAR para ver cómo el dibujo cobra vida con los colores utilizados [77].

![Figura 11. colAR.](image1)

![Figura 12. Diggs Detective Privado.](image2)

Así también los videojuegos con realidad aumentada ya han aparecido hace unos años. Algunos de los juegos disponibles son:

a) **Invizimals.** Lanzado por Sony, presenta una propuesta de criaturas coleccionables muy similar a los Pokémon. La Realidad Aumentada se utiliza para crear la ilusión del mundo alternativo al nuestro donde viven los Invizimals, sólo visibles a través de la cámara de la PSP. En este caso, el marcador que se ha utilizado es un marcador tradicional con borde negro (muy fácil de localizar, permite que la detección consuma pocos recursos) y resulta una pieza clave en el juego puesto que interviene tanto en la búsqueda de Invizimals como en la fase de combates [17].

b) **Diggs Detective Privado.** Un nuevo título de WonderBook, un concepto de libro interactivo que utiliza un libro de marcadores y la cámara PS3 Eye. En este videojuego los niños se unirán a un detective gusano llamado Diggs y le acompañarán en la resolución de distintos casos acontecidos en la misteriosa ciudad Library City. En la resolución de los acertijos tendrán vital importancia seguir algunas pautas relacionadas con...
la interacción de la Realidad Aumentada: investigar según los distintos puntos de vista (rotando el libro-marcador), variar la inclinación o realizar acciones directas mediante la oclusión de los marcadores de las distintas páginas [33].

Pero no sólo a juegos se limita la utilización de la realidad aumentada dentro del entretenimiento, existe un conjunto de otras aplicaciones que poseen esta tecnología desarrolladas con el fin de entretener y aprovechar las funcionalidades ya proporcionadas por los dispositivos actuales, un ejemplo de ello es el Face Stealer, esta aplicación se basa en la tecnología de detección de rostro para superponer máscaras de Realidad Aumentada sobre la cara del usuario. Además, incorpora funcionalidades para compartir en redes sociales. La aplicación incluye una serie de máscaras por defecto que se corresponden a animales, personajes famosos, etc. No obstante, la característica más importante de esta aplicación es que uno mismo puede crear máscaras y compartirlas con todo el mundo. Cualquier imagen 2D susceptible a encajar en un rostro puede convertirse en una divertida máscara [25].

4. Simulación:
Se puede aplicar la realidad aumentada para simular vuelos y trayectos terrestres. Servicios de emergencias y militares: En caso de emergencia la realidad aumentada puede servir para mostrar instrucciones de evacuación de un lugar. En el campo militar, puede mostrar información de mapas, localización de los enemigos [43].

5. Arquitectura:
La realidad aumentada es muy útil a la hora de resucitar virtualmente edificios históricos destruidos, así como proyectos de construcción que todavía están bajo plano [43].

6. Apoyo en tareas complejas:
Tareas complejas, como el montaje, mantenimiento, y la cirugía pueden simplificarse mediante la inserción de información adicional en el campo de visión [43]. Por ejemplo, para un mecánico que está realizando el montaje de un sistema, la realidad virtual puede ofrecer información en tiempo real de las acciones que el mecánico tiene que hacer junto con los objetos que tiene que usar, esto gracias a la utilización de unas gafas, el cual reconoce las piezas del sistema.

La realidad aumentada puede incluir imágenes de los objetos ocultos, que pueden ser especialmente eficaces para el diagnóstico médico o la cirugía. Como por ejemplo una radiografía vista virtualmente basada en la tomografía previa o en las imágenes en tiempo real de los dispositivos de ultrasonido o resonancia magnética nuclear abierta [43].

7. Los dispositivos de navegación:
La RA puede mejorar la eficacia de los dispositivos de navegación para una
Figura 13. Montaje de un motor de automóvil. Sobre la imagen real del automóvil se superpone información adicional sobre las piezas del mismo.

variedad de aplicaciones. Por ejemplo, la navegación dentro de un edificio puede ser mejorada con el fin de dar soporte al encargado del mantenimiento de instalaciones industriales. Los parabrisas de los automóviles pueden ser usadas como pantallas de visualización para proporcionar indicaciones de navegación e información de tráfico [43].

8. **Aplicaciones Industriales:**
La realidad aumentada puede ser utilizada para comparar los datos digitales de las maquetas físicas con su referente real para encontrar de manera eficiente discrepancias entre las dos fuentes. Además, se pueden emplear para salvaguardar los datos digitales en combinación con prototipos reales existentes, y así ahorrar o reducir al mínimo la construcción de prototipos reales y mejorar la calidad del producto final [43].

9. **Prospección:**
En los campos de la hidrología, la ecología y la geología, la realidad aumentada puede ser utilizada para mostrar un análisis interactivo de las características del terreno. El usuario puede utilizar, modificar y analizar, tres mapas bidimensionales interactivos [43].

10. **Colaboración:**
La realidad aumentada puede ayudar a facilitar la colaboración entre los miembros de un equipo a través de conferencias con los participantes reales y virtuales [43]. Un ejemplo de esto fue la colaboración de un cirujano en una intervención de hombro. (Para más detalles Ver Cirugía dentro de este
11. Publicidad:
Una de las primeras aplicaciones masivas de la realidad aumentada fue la publicidad y actualmente continúa así. Hay diferentes campañas que utilizan este recurso para llamar la atención del usuario ganando su admiración diferenciándose de la competencia.

Holaapp es una de las aplicaciones de Realidad Aumentada para campañas de marketing, aunque actualmente va más allá de simples campañas publicitarias. Los smartphones son la pieza clave en esta aplicación. Funciona apuntando con el móvil al cartel e inmediatamente se despliega una cantidad de información asociado al mismo. Lo que se ofrece es un servicio que combina la típica cartelería impresa con las nuevas tecnologías y pone a disposición de marcas y anunciantes una herramienta que permitirá una gran interacción con los usuarios y una capacidad de viralización de contenidos de una forma hasta ahora poco conocida [27].

12. Turismo:
La realidad aumentada junto a la geolocalización hacen posible que los usuarios puedan recorrer las ciudades en sus diferentes épocas históricas convirtiendo al turismo en una actividad mucho más completa gracias a toda la información disponible.

13. Información:
Bajo el mismo concepto que el turismo, con la geolocalización es posible obtener información no solo de los espacios turísticos sino de cualquier lugar
como tiendas, restaurantes, librerías, etc. Algunas empresas que han puesto esto en marcha son:

a) La empresa austriaca Mobilizy ha desarrollado Wikitude. Al apuntar la cámara del móvil hacia un edificio histórico, el GPS reconoce la localización y muestra información de la Wikipedia sobre el monumento.

b) En Japón, Sekai Camera, de la empresa Tonchidot, añade al mundo real los comentarios de la gente acerca de direcciones, tiendas, restaurantes.

c) Acrossair, disponible en siete ciudades identifica en la imagen la estación de metro más cercana. Bionic Eye y Yelp Monocle, en EE UU, son ejemplos similares [43].

14. Networking y eventos:
La empresa mexicana ILLUTIO ha desarrollado BIC (Business Intelligent Card). Al apuntar la cámara del móvil hacia una tarjeta de presentación, la app reconoce la imagen o logo de la empresa y muestra un vídeo, animación o modelo 3D sobre la misma tarjeta; además guarda los datos de contacto en la nube, sin necesidad de preocuparse por perder o guardar las tarjetas físicas [43].

Sexto Sentido. La tecnología de “Sexto Sentido” se basa en el concepto de realidad aumentada, sus creadores son Pattie Maes y principalmente Pranav Mistry. Es una interfaz gestual portátil que aumenta el mundo físico que nos rodea con la información digital y nos permite usar gestos naturales para interactuar con esa información [68].

Modo de funcionamiento [47] [68]

El prototipo sexto sentido se compone de un proyector de bolsillo, un espejo y una cámara. Los componentes de hardware están acoplados en un colgante como dispositivo portátil móvil. La cámara web y el proyector portátil se comunican de forma inalámbrica con el teléfono móvil conectado a Internet, el cual actúa como dispositivo de comunicación y computación. El proyector proyecta la información visual sobre superficies, paredes y objetos físicos que nos rodean, los cuales son utilizados como interfaces.

La cámara sirve para la entrada de datos, pues reconoce y hace un seguimiento de los gestos del usuario con las manos, en particular de los cuatro dedos más significativos los cuales deben ser diferenciados por color. La cámara reconoce cualquier clase de movimiento así como ciertos ademanes preestablecidos, como colocar los dedos índice y pulgar en forma de L para tomar fotografías o separar las manos para aumentar el tamaño de las imágenes. El software procesa los datos de la secuencia de vídeo captadas por la cámara y rastrea la ubicación de los marcadores de colores ubicados en la punta de los dedos del usuario utilizando técnicas de visión por computador simples. Los movimientos y disposiciones de estos marcadores se interpretan en gestos que actúan como instrucciones de interacción para las interfaces de aplicaciones proyectadas. El número máximo
de seguimiento de dedos está limitado sólo por el número de marcadores únicos, así sexto sentido también es compatible con multi-touch y la interacción de múltiples usuarios.

![Imagen de Sexto Sentido](image)

Figura 16. Hardware necesario para el funcionamiento de Sexto Sentido.

Aplicaciones [68]

- El proyector muestra un mapa en la pared, y el usuario lo controla utilizando zoom y otros gestos.
- El usuario puede hacer un gesto en forma de L para instruir a la cámara a que tome una fotografía. La foto se recortará automáticamente para quitar las manos del usuario.
- El sistema podría proyectar varias fotos en una pared, y el usuario puede ordenar, cambiar el tamaño y organizarlas con gestos. Esta aplicación se llama Window Realidad Manager (VM) en la implementación de diadema de Mann de sexto sentido.
- Un teclado numérico se proyecta sobre la palma del usuario, y el usuario puede marcar un número de teléfono tocando su palma con un dedo. La cámara y el proyector son capaces de ajustarse a sí mismos en superficies que no son horizontales.
- El usuario puede recoger un producto en el supermercado (por ejemplo, un paquete de toallas de papel), y el sistema podría mostrar información relacionada (por ejemplo, la cantidad de cloro que se usa) de vuelta en el mismo producto.
El sistema puede reconocer cualquier libro recogido por el usuario y mostrar el rating de Amazon en la portada del libro.
A medida que el usuario abre un libro, el sistema puede mostrar información adicional, como los comentarios de los lectores.
El sistema es capaz de reconocer artículos de prensa y proyectar el video más reciente del evento de prensa en una región en blanco del periódico.
El sistema es capaz de reconocer a las personas por su apariencia y proyectar una nube de palabras de información relacionada en el cuerpo de la persona recuperada de la red social de dicha persona.
El sistema es capaz de reconocer una boleto de vuelo y mostrar la información relacionada, como retraso en el vuelo y el cambio de la puerta.
El usuario puede dibujar un círculo en su muñeca, y el sistema proyectará un reloj en él. Se da a entender la capacidad para detectar con precisión la ubicación de la muñeca.

Ventajas [68]

Interacción Múltiple: Permite al usuario interactuar con el sistema con más de un dedo a la vez, así también puede funcionar con varios usuarios a la vez, como se mencionó anteriormente basta con tener marcadores únicos. Esto es típicamente útil para grandes escenarios de interacción, tales como tableros interactivos y paredes.

Rentable: El coste incurrido para la construcción del prototipo sexto sentido es bastante bajo. Se hizo a partir de piezas reunidas de dispositivos comunes. Y un dispositivo típico Sexto Sentido cuesta hasta US$300. Los dispositivos de sexto sentido no se han hecho en gran escala con fines comerciales, de ser así el costo sería mucho más bajo que el precio actual.
• Acceso a los datos directamente desde las máquinas en tiempo real:
Con la ayuda de un dispositivo de Sexto Sentido, el usuario puede acceder fácilmente a los datos desde cualquier máquina en tiempo real. El usuario no requiere ningún tipo de interfaz hombre-máquina para acceder a los datos. El acceso a los datos a través del reconocimiento de gestos de la mano es mucho más intuitiva y más fácil de utilizar en comparación con la interfaz de usuario de texto o una interfaz gráfica de usuario que requiere el teclado o el ratón.

• Visualización de la información en cualquier lugar:
Con esta tecnología no se requiere de una plataforma o una pantalla para analizar e interpretar los datos. Se puede proyectar la información en cualquier superficie y trabajar y administrar los datos según la conveniencia de cada usuario.

• Software de código abierto:
El software utilizado para la interpretación y análisis de los datos recolectados por el dispositivo es de código abierto. Esto permitirá a otros desarrolladores contribuir al desarrollo del sistema. Actualmente se encuentra disponible en https://code.google.com/p/sixthsense/

Desventajas y críticas

• La falta de integración de los componentes disminuye el atractivo visual del prototipo y dificulta la capacidad de reconocimiento del sistema [68].

• Falta de portabilidad. El usuario debe llevar todos los dispositivos colgando en el cuello. Sin embargo en la última conferencia respecto al tema realizada por el TED4 en 2009, los investigadores señalaban que se espera presentar en el futuro un dispositivo más compacto de un tamaño y precio equivalente al de un teléfono móvil.

• Al hacer uso de las funciones ofrecidas el usuario debe interactuar con el dispositivo por medio de gestos, esto puede resultar incómodo para algunas personas [47].

• La utilización de dedales/cintas de colores en las manos para el reconocimiento gestual afecta el grado de accesibilidad a la tecnología [47] sin mencionar que resulta poco natural llevar puestos estos dedales, los cuales podrían dificultar la realización de otras actividades.

• La inclusión de un proyector debilita la capacidad de movilidad en los usuarios debido a que la imagen se movería a la par que el individuo. Uno tendría que mantenerse completamente firme para que la imagen proyectada no se dispare por cualquier lado [47].

• Privacidad. Cuando se proyecta una imagen sobre una superficie cualquiera, la proyección no es suficientemente privada para el usuario pues es muy detallada, fácilmente las personas de alrededor podrían visualizarla.

4 TED Technology, Entertainment, Design, organización sin fines de lucro dedicada a las “Ideas dignas de difundir”, cubren un amplio espectro de temas que incluyen ciencias, educación, cultura, negocios, tecnología y desarrollo, entretenimiento, entre otros.
• La proyección es mejor en las noches y en la oscuridad que en las mañanas y en áreas brillantes. Esto es un problema porque la visión del usuario puede sufrir daños al utilizar esta tecnología [46].
• Desde el 2009 no hay noticias respecto a esta tecnología. Pranav Mistry dijo, “Este prototipo necesita un poco de ingeniería seria y programación.” [46], por lo que su salida al mercado se espera con ansias. Sin embargo existen preocupaciones con respecto al precio del producto una vez que todas las modificaciones estén hechas.

4.3. Análisis tecnológico y personal-social

La frontera que separa lo real de lo irreal es un tema frecuente en estos días argumentada en el gran auge de las tecnologías, de Internet y sobre todo en el deseo de combinar el dinamismo del mundo digital con los objetos a los que estamos acostumbrados.

Como ya se mencionó anteriormente los entornos virtuales generan morato-ría psicosocial, en la que el usuario puede construir más de una identidad. La existencia de estas múltiples identidades favorece la experimentación, pudiendo adoptar, potenciar o desestimar aspectos puestos en práctica en estos entornos, en la propia cotidianidad. Si bien las terapias con realidad virtual tienen como fin ayudar a personas con determinados problemas psicológicos, estos mundos virtuales también pueden servir como terreno para experimentar fantasías personales, emociones, sentimientos que en menor o mayor intensidad pueden potenciar actitudes contraproducentes que se traduzcan en la realidad. Violencia, asesinato, delincuencia, pornografía, pedofilia son algunos de los temas que un jugador puede encontrar en estos entornos virtuales.

Otra de las aplicaciones interesante tanto de la realidad virtual como aumentada está en la medicina. Gracias a estas tecnologías es posible realizar prácticas ya no en seres vivos, evitar el miedo a cometer errores, que los veteranos puedan compartir sus conocimientos con los profesionales o estudiantes incipientes. Sin embargo estas tecnologías tiene un costo elevado por lo que sólo los hospitales y universidades prestigiosos pueden poseerlas, se produce entonces una diferenciación en la sociedad. Primero, para personas pobres que dependen del sistema de salud público la situación sería la misma, éstas no obtendrían los beneficios de los dispositivos; segundo, muy pocos serán los que se gradúen con este tipo de experiencia. Entonces, la pregunta que surge es: ¿Qué hacer en estos casos donde tecnologías tan importantes no están al alcance de todos? Se podría hablar de desarrollar tecnologías más simples y asequibles, dejar en manos del Estado la adquisición de las mismas, establecer convenios entre las instituciones para el uso de estas tecnologías, en fin, cada una de las posibles soluciones deberá ser analizada en el contexto en que se dan. Mas allá de lograr que esto llegue a mayores sectores de la sociedad, existe una cuestión ética detrás de toda esta tecnología, tiene que ver con el uso que se hace de la misma. La capacitación es un elemento fundamental en estos casos más que la posesión,
porque finalmente está en juego la vida de las personas.

En general, las tecnologías que implementan realidad aumentada ofrecen **ubicuidad de la información**, es posible acceder a una gran cantidad de información de cualquier tipo, en cualquier lugar y momento de manera rápida y fácil. Así también tecnologías como Sexto Sentido reemplazan las interacciones tradicionales con la computadora por medio del ratón y el teclado, como resultado, personas que antes no se involucraban con la tecnología por considerarla complicada de manejar hoy pueden acceder a sus correos electrónicos tan solo dibujando una @ o quitar una fotografía a través de gestos prácticos e intuitivos.

Un factor a tener en cuenta en el uso de estas tecnologías, sobre todo en ambientes virtuales tiene que ver con la **salud**. El audio de alto volumen puede producir daños auditivos, los efectos de luces, resplandores puedan ocasionar vértigo, así también la posición o peso de los cascos acompañado de movimientos bruscos, repetitivos y prolongados podrían provocar daños en la cabeza, cuello e inclusive la espina vertebral. Además, ¿qué sucede con el usuario si algunos de los dispositivos falla?, las manos y los brazos pueden ser pinchados o sobre extendidos. De ahí que el diseño, producción y lanzamiento al mercado de equipos más seguros, flexibles y livianos se conviertan en la meta de las compañías dedicadas a estas tecnologías.

4.4. Futuro de la Realidad Virtual y Aumentada

Para que estas tecnologías se conviertan en una materia cotidiana es necesaria una reducción en los costos del equipamiento y del software. Como la historia ha demostrado a lo largo de los años, el campo tecnológico siempre está avanzando, los mercados de hardware y software evolucionan, aparecen tecnologías innovadoras; por lo que no es imposible pensar que dispositivos y/o sistemas con realidad virtual y aumentada en algunos años se masifiquen llegando a todas las áreas de aplicación.

En el caso particular de la educación, actualmente los niños llegan a las aulas sobreestimulados por el entorno a través de los videojuegos y la televisión, por tanto los medios tradicionales, libros de texto y pizarra, no consiguen llamar su atención. La RA puede utilizarse para complementar los materiales didácticos con modelos virtuales que estimulen la percepción y ayuden a la comprensión de los conceptos [17], en general esto puede aplicarse a todos los niveles de la educación (inicial, primaria, secundaria y universitaria). De masificarse su uso esto abre dos vertientes: por un lado está la persona que realmente quiere aprender, entonces la RA se convierte en el medio perfecto para conceptualizar, generalizar o aplicar los conocimientos adquiridos porque le proporciona interacción; pero por otro lado está aquella persona utilitarista que desea la información para aplicarla en el momento, y como sabe que va tener dicha información cuando lo desee no conceptualiza pues no hay necesidad, en este caso la RA es contraproducente. El futuro está en el modelo educativo aplicado, los alumnos y profesores deberán
ser conscientes que la RA será sólo una herramienta para apoyar la educación y fortalecer los conocimientos, su objetivo no será sustituir la enseñanza y el aprendizaje.

El uso masivo de estas tecnologías supondrá cambios en todos los ámbitos de la sociedad, al respecto es importante resaltar que los cambios no ocurrirán de la misma forma en todos los países. Las consecuencias sociales, educativas, políticas, económicas, etc, a partir de la tecnología dependerán exclusivamente de la cultura, las costumbres, los valores y las tendencias propias de cada país.

5. RFID y Geolocalización

5.1. RFID

Identificación por radio frecuencia, consiste en el uso de pequeños sensores o etiquetas RFID que se pueden pegar o incrustar en un objeto con el propósito de rastreo. Su apariencia es de una pequeña calcomanía del tamaño de una estampilla(pegar) o chips que pueden ser incrustados en objetos del día a día. Utilizada inicialmente para identificar objetos remotamente, desde un animal, libros a artículos de supermercado las cuales son aplicaciones más reconocidas de la tecnología. Con el tiempo fueron evolucionando y algunos pueden realizar cálculos. Etiquetas utilizadas en investigaciones tienen sensores y son capaces de ejecutar programas para recopilación y procesamiento de datos [75].

La tecnología nace en 1920 cuando en la primera guerra mundial con el problema del fuego enemigo buscaban identificar sus propios aviones para evitar la colisión aire-tierra tierra-aire además de identificar los aeroplanos aliados. Su uso evolucionó hasta lo que conocemos en la actualidad, control de suministros y sustitución de código de barras, control de hurto, en agricultura rastreo y control de ganado [71].

Tres elementos para la implementación [6].

1. **Etiqueta.** Almacena un identificador único o la información pertinente, la cual se transmite. Chips de diferente capacidad de almacenamiento, con capacidad de solo lectura o lectura y escritura.
 - **Pasiva:** Su característica principal es que no incluyen baterías. Utilizada para productos de menor valor, alcance de la frecuencia limitado de 1 a 3 metros. Estas etiquetas tienen incorporadas una antena, y gracias al acoplamiento inductivo reciben la energía del lector y así emiten la información que almacenan.
 - **Activa:** Batería incluida. Vida útil de varios años. Permite emitir a decenas de metros. Con ellas se realiza seguimiento de activos de gran valor para empresas en sistemas de distribución por ejemplo.

2. **Lector.** Encargados de recibir y procesar la información para luego pasarlas a un software que utiliza esta información.
3. **Middleware.** O subsistema de procesamiento, es el software encargado de gestionar la información proveniente del lector y pasarla a sistemas que realizan seguimiento de los datos como podría ser una base de datos.

EPC. Código electrónico de producto, es un remplazo para el código de barras que puede transportar una mayor cantidad de información y se puede leer vía electrónica a distancias de más de 10 metros. Utiliza las etiquetas RFID para residir y por medio de las redes EPC se intercambia la información del producto u objeto [75].

Compatibilidad con NFC. Near Field Communications o por sus siglas NFC popularizado por la integración y uso en smartphones, es una tecnología que permite el intercambio de información entre dispositivos a una distancia muy corta, y es un subconjunto de la tecnología RFID cambiando el rango de alcance a diez centímetros. Las etiquetas basadas en NFC nacieron de la necesidad de proteger que cierta información se propague en el rango de las etiquetas RFID estándar. Ejemplos son tarjetas de crédito y pasaportes digitales [18].

Con esta tecnología se puede realizar comercio móvil o comercio-m sustituyendo a tarjetas de crédito y efectivo. Posteriormente el cargo aparece en la factura del teléfono. Se pueden realizar pagos de comida en máquinas expendedoras, boletos de cine, transporte y otros artículos pequeños [75].

Los Smart Tags son un ejemplo claro del uso de esta tecnología en los dispositivos móviles, popularizado por Sony. Los Smart Tags son tarjetas estilizadas, con un chip NFC integrado con información, la cual al ser posicionado próximo al dispositivo puede realizar una acción en el dispositivo como apagar el WI-FI, encender GPS, entre otros. Permitiendo automatizar acciones en el smartphone por medio de estos Smart Tags. Los Smart Tags comercializados son específicos para cada situación y pueden ser muy útiles. La Smart Tag Casa activa los datos y desactiva el WiFi cuando se pasa dos veces cerca del dispositivo y si se pasa solo una vez realiza la operación inversa [22].

Como curiosidad: los Smart Tags implementan una tecnología que ya se utilizaba en el sistema de transporte de varios países como Londres y México. Es por eso que se pueden utilizar estas tarjetas para el tránsito como un Smart Tag, sin necesidad de comprar uno ya que sus precios pueden ser altos. Lo único que se necesita es una aplicación que pueda detectar la proximidad de un chip NFC y asignar acciones a los identificadores leídos. Para una demostración ver el link en la referencia [21].

Una visión de esta tecnología es Internet of Things, en donde se conectan a Internet objetos del mundo físico [75].
5.2. Geolocalización

Al igual que la tecnología de identificación por radio frecuencia la geolocalización permite obtener datos de localización de un objeto, animal o persona de forma remota. La diferencia entre ambas está en que la Geolocalización es específica en enviar datos de localización que otro tipo de información.

Actualmente el sistema más utilizado para la geolocalización es el GPS, pero antes de entrar en detalle, mencionaremos un poco de historia y otras alternati-
En la navegación la necesidad de orientarse siempre fue primordial ya que visualmente en las grandes aguas no hay más referencia que las estrellas en el cielo las cuales cambian según la estación y no están disponibles cuando el cielo está cubierto. Se crean instrumentos de medición como la brújula y los no tan conocidos sextante, ballestilla y cuadrante. Para realizar cálculos con los datos obtenidos de estos instrumentos se utilizaba (y se sigue utilizando) la triangulación y cartas de navegación. Todo esto se fue perfeccionando desde el siglo XV y XVI de las expediciones españolas y portuguesas, paulatinamente mejorando los instrumentos de medición [29].

Figura 20. Sextante utilizado para realizar medidas de coordenadas.

Con el desarrollo de la radiofrecuencia la comunicación con las costas se hicieron posible y más que localización se realizaban las comunicaciones entre barcos para determinación de rutas, militarmente para la Segunda Guerra Mundial surge la necesidad de localización y navegación de aviones en la noche. Basados en el concepto de Radar se estableció un sistema de triangulación para identificar a los aviones. Fundamentalmente esta implementación utilizaba identificación por radio frecuencia.

Todo cambió hacia lo que conocemos hoy con respecto a la geolocalización, con el lanzamiento de Sputnik, el primer satélite artificial puesto en órbita en 1957 por la Unión Soviética. Las investigaciones y desarrollo se ven impulsados por la necesidad de localización de proyectiles nucleares por parte de Estados Unidos. Varios proyectos desarrollados sobre navegación satelital como el TRANSIT luego convergen en el sistema NAVSTAR-GPS (Navigation System Timing and Ranging-Global Positioning System) que consistía de 12 satélites. Más tarde la Unión Soviética también implementa un sistema parecido denominado GLO-
NASS. Ambos sistemas diferentes pero con capacidad de ser integrados.

Esta tecnología quedó universalizada en la década de los noventa luego de haber sido demostrada su eficacia en la Guerra del Golfo. Su integración en el mundo civil fue dada luego de que en 1983 un avión de Corea del Sur fuera atacado por la Unión Soviética y se sugirió el uso de GPS en aviones civiles [69].

GPS. Sistema de posicionamiento global, compuesto por 24 satélites los cuales transmiten señales que reciben información e identifican receptores GPS en la tierra. Se utiliza triangulación para establecer la posición del receptor con precisión de más o menos metros. Los receptores pueden ser sencillos y sólo determinar longitud, latitud y altura. Los más completos trazan rutas recorridas recordando las coordenadas anteriores o en la que estamos en un momento determinado.

La precisión puede no ser exacta, está determinado por varios factores que influyen sobre la señal que viaja de receptor a satélite y viceversa. Algunos de estos factores son velocidad de la señal a través de los gases de la atmósfera, ángulo entre el receptor y el satélite, clima, entre otros. Para solucionar esto y obtener datos con mayor exactitud se realizan cálculos que complementan los resultados en el receptor [54].

Figura 21. Dispositivo GPS.

Geoetiquetado. Consiste en agregarle a los archivos información extra, referenciando la ubicación relacionada al archivo. Las geoetiquetas pueden ser información de longitud, latitud y altitud o también nombre de calles, código postal, etc. y con esto se puede obtener luego las coordenadas. Los archivos mas geoetiquetados son imágenes por medio de cámaras que tienen esta funcionalidad,
aunque Facebook y otros sistemas de mensajería permiten etiquetar los mensajes con las coordenadas en la que se encuentra el dispositivo móvil en el momento.

Las técnicas de geotiquetado utilizan el sistema GPS, cámaras con este sistema incorporado, u otros medios de obtener la información de posición como la información de la celda del ISP. Los dispositivos pueden no tener integrado el GPS y conectarse por otros medios a él, por ejemplo Bluetooth. Las redes sociales permiten etiquetado de imágenes indicando en donde se tomaron las fotografías, esto no necesariamente edita los metadatos pero es una forma de etiquetar la posición [4].

Muchos de los dispositivos móviles en la actualidad tienen incorporados un GPS, es por eso que muchas aplicaciones hacen uso de eso para obtener información y sus servicios dependen de la ubicación. Algunos ejemplos cotidianos son mapas móviles y dar indicaciones, buscar lugares cercanos como restaurantes, bibliotecas, tiendas, etc. Otros más actuales como registrarse en un lugar (check-in), o realizar geotiquetado a fotos y vídeos [75].

5.3. Análisis Tecnológico y Social.

La capacidad de rastreo de los lectores RFID puede representar una invasión a la privacidad. Debido a que las etiquetas RFID carecen de capacidad de cómputo y comunicación requerida, no se puede hacer mucho más que utilizar contraseñas, las cuales pueden ser quebrantadas con facilidad. Lo ideal sería utilizar encriptación de los datos, pero esto requiere de una capacidad mayor de procesamiento. Es por esto que resulta difícil asegurar una etiqueta RFID.

Para lograr la geolocalización actualmente se utiliza ampliamente el sistema GPS, este permite una gran variedad de cosas, con algunas ya estamos acostumbrados y no nos resulta ninguna novedad, como direccionamiento en tiempo real para llegar a un destino. Empresas como alquiler de vehículos utilizan esta tecnología para realizar localización de sus activos.

El mismo problema ocurre con la geolocalización, y ahora más que nunca somos conscientes de ello. La integración de GPS en nuestros dispositivos móviles ayudo a eso. Resulta bastante útil cuando nos perdemos en las ciudades, se extraviá el celular, queremos marcar nuestro recorrido para ver nuestros avances en cuanto a nuestra salud. Pero qué ocurre si alguien tiene acceso a esta información en la nube y nos monitorean. La brecha de seguridad en la actualidad ha sido demostrada públicamente que está comprometida. Debemos de ser cuidadosos con lo que estamos compartiendo intentando no perder la cordura y entrando en la paranoia. Todo en dosis moderadas.

Mencionando una ventaja para el RFID, se tiene la implementación de estas etiquetas en pulseras para eventos, tales como recitales. Las personas que van a un concierto pueden hacer check-in, darle like y compartir en sus redes sociales.
Esto les permite a los organizadores y marcas promocionar los eventos a otro nivel y expandirse en Internet, aumentando la experiencia para los espectadores y captar mayor cantidad de audiencia. Ideal para las empresas [10].

6. Wearable Computing

Wearable computing o computadoras para vestir es un esfuerzo por hacer de las computadoras realmente parte de nuestro día a día, incorporándolas en nuestra ropa o accesorios como lentes, headsets. Este nivel de acceso a la computación revoluciona por donde se le mire a la forma en que nos relacionamos con las máquinas, y también con los humanos.

Los requerimientos que un dispositivo debe cumplir para ser considerado un wearable computing deben ser:

1. **Computacional.** Almacenar y procesar información.
2. **Portabilidad.** Usado y llevado por una persona corrientemente.
3. **Interacción.** La persona que lo lleve debe ser el usuario del dispositivo.
4. **Propósito.** Proveer al usuario medios, conocimiento u oportunidades de ser capaz de completar una tarea dada.

El rendimiento puede ser medido según dos criterios: transparencia y eficacia. La transparencia es el grado con el cual el uso del dispositivo es visible cuando se pone en contexto de los quehaceres diarios del usuario. Para que estos dispositivos sean usados habitualmente, deben ser livianos y pequeños y disponer de una interfaz intuitiva con el usuario.

La eficiencia se mide según el grado de permitir al usuario realizar una tarea fácilmente o permitir completar tareas completamente nuevas [64].

Entre sus aplicaciones más importantes se encuentran los teléfonos móviles, sistemas de monitoreo para cuidados de la salud, moda, gestión de servicios e integración sensorial. Esto último, utilizando la tecnología de BCI (Brain Computer Interface) y/o realidad aumentada, bastante útil en brindar asistencia a personas con capacidades limitadas, ya sea física (mejorar los sentidos de audición, vista) o entender mejor el mundo.

En la actualidad, principios de la década 2010, los dispositivos más popularizados son los smartphones, los cuales ya de por sí entran en la categoría de Wearable Computing, trajeron consigo con gran variedad de gadgets que lo hacen aun más inteligente. Muchos de ellos van directamente unidos al teléfono como el Message Scent (atomizador que permite enviar olores), pueden ser de escritorio o para la casa como speakers, y los que uno puede llevar puesto.

Entre los más conocidos en los últimos años se encuentran Google glass y los relojes inteligentes como el Samsung Galaxy Gear, Pebble, Apple Watch, y
otros lanzados más específicamente para personas que realizan actividades físicas y llevan un registro de ellas. La variedad de gadgets que uno puede llevar puesto solo va en aumento y lo que uno se imagina poder encontrar, lo más probable es que lo encuentre.

6.1. Google Glass

En la categoría de gafas inteligentes la más conocida actualmente es Google Glass. Es un dispositivo de visualización basadas en realidad aumentada desarrollado por Google. Su objetivo es desplegar información disponible para los usuarios de smartphones utilizando principalmente comandos de voz permitiendo usar internet.

Las aplicaciones para el dispositivo son gratuitas creadas por terceros y utiliza aplicaciones propias de Google como Google Now, Maps, Google+ y Gmail. En abril del 2013 se lanzó la Mirror API permitiendo el desarrollo de aplicaciones para el Glass.

Una de las aplicaciones reales de esta tecnología ha sido realizada por una escuela de pilotos Adventia, adscrita a la Universidad de Salamanca, primeros en el mundo en volar con Google Glass. Se espera que esta aplicación mejore la formación de los pilotos, aumentando la seguridad e incorporando la innovación en la cabina de vuelo. Permiten complementar la docencia que reciben en los simuladores, preparándolos para su primer vuelo. Con esto se aumentaría la productividad y habilidad de los pilotos [9].

Figura 22. Google Glass.
6.2. Smart Watches

Estos relojes pueden realizar una gran variedad de tareas las cuales pueden hacernos sentir como auténticos espías, se pueden tomar fotografías, realizar llamadas, enviar mensajes, monitorear ritmo cardíaco, consultar el estado del clima, notificar actualizaciones en las redes sociales, entre otros. Se conectan a otros dispositivos, principalmente smartphones mediante WiFi o Bluetooth. Algunos traen GPS incorporado.

En la actualidad ya han sido lanzados al mercado unos cuantos relojes que van ganando popularidad. Entre ellos se encuentran: el Pebble, Samsung Galaxy Gear, Sony SmartWatch y el nuevo Apple Watch (2014).

Figura 23. Algunos relojes inteligentes más conocidos.

6.3. Misfit Shine

Dispositivo que permite llevar un registro de las actividades físicas en la marcha. Al llevarlo puesto, Shine analiza tus actividades y te informa al final si tus movimientos corporales están lo suficientemente bien para mantenerte en forma y saludable [52].

6.4. Samsung Gear Circle y Samsung Gear S

Los smartphones son una herramienta genial que se han convertido en elemento indispensable en nuestras vidas. Sin embargo hay momentos en los que...
Figura 24. Dispositivo Misfit Shine puesto sobre una camiseta.

resulta un objeto demasiado voluminoso, como por ejemplo a la hora de hacer deporte. Pensando en este asunto, precisamente, Samsung ha creado el tándem Gear S + Gear Circle. Y es que como el smartwatch Gear S dispone de ranura para tarjeta SIM, conectividad 3G, y 4 GB de memoria interna, podemos dejar el smartphone en casa mientras salimos a correr y recibir llamadas, notificaciones, o escuchar música, simplemente con el smartwatch y los auriculares de Samsung.

Los auriculares Samsung Gear Circle se conectan al reloj inteligente Gear S mediante Bluetooth, y dispone de botones y de un sistema de vibración con los que podremos interactuar con el smartwatch. Además de todo ello dispondrá del sistema de reconocimiento de voz S Voice de Samsung, mediante el cual podremos crear comandos para interactuar con el smartwatch, aunque también se podrá utilizar con los smartphones de Samsung [72].

Una limitación es que es solo será compatible con una cantidad limitada de smartphone.

Aunque el tamaño del hardware se haya reducido para adaptarse a algo normal que poder vestir y acomodarse a las personas, la energía podría seguir siendo un problema, de capacidad y tiempo de vida de la batería, haciendo a la tecnología incómoda por el hecho de tener que cargar constantemente. Se plantea como solución la generación de energía por medio de las acciones de los usuarios [74].

6.5. Análisis Tecnológico Social

Existen muchas críticas y parodias en internet sobre los gadgets más populares como los Smart Watch y Google Glass. Las funcionalidades que estos dispositivos presentan a muchos les hace cuestionar ¿Cuál es su diferencia con los smartphones? ¿Mi smartphone hace lo mismo?, y no ven lo novedoso o la utilidad en ellos. El éxito de estos productos dependen de la aceptación de la gente y siempre existirán personas a las que les guste o no. Habrá quienes se
adapten y los que no.

¿Son los smartphone parte de esta tecnología?, sí, ya que cumplen los requerimientos para formar parte de esta tecnología.

El aumento en los últimos años de estos dispositivos se vuelve algo normal no novedoso para la mayoría. El incremento se debe a que en realidad ayuda a mejorar y facilitar la vida de las personas, esto lleva a una dependencia de los dispositivos (¿podríamos llamarlo adicción?). Esto se ve fácilmente todos los días en momentos en que las personas prefieren interactuar a través de sus teléfonos en contextos sociales que mantener una conversación con la persona en frente de ella.

Nos encontramos nuevamente con los problemas que surgen con la geolocalización con respecto al rastreo en esta tecnología, ya muchos de estos dispositivos tienen incorporados el GPS o están conectados a dispositivos con capacidades similares. Pero se tienen más ventajas que esa posible desventaja, como evitar perderse y localizar lugares fácilmente.

En el futuro podrían combinarse tecnologías para mejorar la experiencia al usuario y agregar funcionalidades a estos dispositivos para vestir. Al dispositivo de realidad aumentada se le podría agregar sensores de BCI (Brain Computer Interface) para controlar con la mente dispositivos como Google Glass. Solo que estos tendrán sus implicancias en cómo percibimos el mundo real, cambiando nuestras experiencias actuales, todos con sus ventajas y desventajas; pero siempre buscando el mejoramiento de la calidad de vida de las personas.

7. Interfaces hápticas

El término de dispositivo háptico y en sí la palabra háptica son realmente modernos. Proviene del griego hápto (tocar, relativo al tacto) y se refiere a la ciencia que estudia todo lo relativo al tacto y sus sensaciones como medio de control e interacción con máquinas y computadores [63]. Si bien la vista y el
oído son los sentidos que más utilizamos para relacionarnos con el mundo que nos rodea, sobre todo cuando se trata de entornos virtuales, el tacto tiene vital importancia porque hace del mundo virtual un ambiente más real.

7.1. Interfaces y dispositivos

La sensación haptica puede simularse de varias formas. A continuación se clasifican las interfaces y los dispositivos en dos grupos. Los táctiles y los de realimentación de fuerzas [11].

Interfaz táctil. Con estas interfaces lo que se pretende es estimular a los mecanorreceptores que se encuentran en la piel. Los mecanorreceptores no se encuentran distribuidos de forma homogénea a lo largo de toda la piel, sino que se encuentran concentrados en zonas como son las yemas de los dedos, la mano, etc. Si bien se podría hacer dispositivos para cualquier zona, se suele realizar para las yemas de los dedos, ya que es una zona muy estudiada y donde se encuentran los distintos tipos de mecanorreceptores.

Distinguiamos entre cinco tipos de interfaces posibles: [11]

1. **Vibradores**: La forma más intuitiva de producir sensaciones táctiles es mediante la vibración a una frecuencia determinada. Con esto se consigue una estimulación de forma muy localizada, pero puede interesar todo lo contrario, una estimulación homogénea por todo el usuario. Un ejemplo de utilización puede ser para tratar el miedo a volar mediante realidad virtual. Con un gran altavoz trabajando a baja frecuencia bajo el asiento del viajero simula de forma muy realista las vibraciones producidas por el avión.

Un ejemplo de dispositivo de este tipo es el **CyberTouch**. El sistema de CyberTouch es una opción de transmisión táctil para los guantes instrumentados de CyberGlove\(^6\). Cuenta con pequeños estimuladores vibro-táctiles en cada dedo y en la palma de la mano. Cada estimulador puede programarse individualmente para variar la fuerza de la sensación de toque. Otro dispositivo similar es el **TouchMaster**.

2. **Neumáticos**: Este mecanismo pretende producir una sensación táctil muy localizada, para ello se basa en sistemas de compresión de aire que puedan inyectar hacia la piel del usuario de forma muy localizada. El principal problema de esta tecnología es que es necesario obtener aire comprimido de forma fluida, con lo que el tamaño de los sistemas aumenta considerablemente.

\(^5\) Son los sensores encargados de detectar las variaciones de presión sobre la piel y responden ante ella con la generación de un impulso nervioso que se dirige al cerebro.

\(^6\) Guantes inalámbricos que utilizan tecnología de detección de plegado de resistencia para transformar los datos de los movimientos de la mano y dedos en tiempo real [2].
3. **Mecánicos**: Consisten en estimular la piel de forma directa, mediante actuadores mecánicos. Es la forma más precisa de conseguir una estimulación táctil. La principal aplicación consiste en la simulación de texturas.

4. **Electrocutáneos**: Estos estimuladores se basan en la propiedad que tienen los mecanorreceptores de la piel de ser células nerviosas, con lo cual, ante una corriente eléctrica también producen estímulos similares a los que producen de forma normal cuando se activan bajo presión. Lo que se hace es pasar una pequeña corriente eléctrica, lo suficientemente pequeña para no producir dolor y lo suficientemente grande como para estimular las células mecanorreceptoras, por medio de una serie de electrodos colocados en la zona deseada. Así se consigue una sensación no muy localizada.

5. **Térmicos**: Estimulan los receptores térmicos. Se utilizan módulos termo- eléctricos que son capaces de generar un gradiente térmico en función de la tensión aplicada de forma localizada sobre la piel del usuario. Estos dispositivos se suelen usar con un dispositivo de seguimiento, para permitir que el usuario pueda notar el cambio de temperatura de la superficie que está tocando con sus dedos.

Interfaces de realimentación de fuerza. Las interfaces táctiles sólo simulan la presión ejercida al usuario de forma localizada. Existe un conjunto de características de los objetos como elasticidad, viscosidad, adherencia, etc, que no se pueden conseguir con estas interfaces, sin embargo con las interfaces de fuerza sí es posible. Es por ello que actualmente éstas son las más aplicadas en realidad virtual. Cuando en un mundo virtual se desea tocar un objeto (apretarlo, manipularlo, etc.) se puede hacer de forma realista, notando que el objeto ocupa realmente un volumen determinado en el espacio. Con estas interfaces se podría establecer un plano virtual, y cuando el usuario lo toque y quiera traspasarlo, de alguna forma el sistema virtual se lo impida.

Las interfaces de fuerza pueden ser de dos tipos: [11]

1. **Exoesqueletos**: Son armazones colocados sobre algunas articulaciones y miembros del usuario que de forma controlada permiten aplicar una resis-
En el caso de los dispositivos de transmisión de fuerza, al no permitir al usuario tocar de forma directa el objeto, sino a través de un medio físico intermedio, como pueda ser una varilla o dedal, las principales utilidades que tienen estos dispositivos es para el entrenamiento en cirugía, ya que son habilidades manuales muy precisas y costosas de realizar.

Figura 28. Phantom. Dispositivo del tipo interactuador puntual.
Haptic Master son equipos con determinados grados de libertad utilizados para realizar tareas específicas.

7.2. Otras formas de interfaces táctiles

Interfaz táctil de Usuario. Es una interfaz de usuario que permite la comunicación entre un usuario y un dispositivo electrónico mediante el sentido del tacto a través de una pantalla sensible, conocida como pantalla táctil. Permite la interacción del usuario directamente con el contenido, eliminando periféricos intermedios como el teclado y el ratón.

Multitáctil. Se trata de una pantalla táctil o touchpad que reconoce simultáneamente múltiples puntos de contacto, es decir, el usuario puede utilizar más de un dedo, incluso con ambas manos a la vez y, dependiendo de la superficie del dispositivo, algunas tienen un tamaño lo suficientemente grande de modo que varios usuarios pueden utilizarlos de manera simultánea.

Figura 29. Interfaz táctil de usuario.

Figura 30. Pantalla Multitáctil.

Skinput: Pantalla táctil en la piel. La interfaz gráfica no limita su proyección sólo a pantallas, sino que ahora es posible una proyección e interacción sobre la piel, el propio cuerpo. Este es el concepto de “Skinput”, desarrollado en conjunto por Carnegie Mellon University y Microsoft Research Labs, es una técnica bio-acústica que permite que el cuerpo sea utilizado como dispositivo de entrada. Cuando un dedo da un golpe sobre la piel, el impacto crea un conjunto de señales acústicas. Para poder leer estas señales, el prototipo consiste en un brazalete de sensores bio-acústicos, enfocado en la entrada de datos por medio de brazos y dedos. El brazalete también posee una proyector gracias a la cual se genera una proyección con interfaz gráfica-dinámica sobre la piel, el cual puede ser operado directamente con los dedos haciendo clic en los botones que se presentan.
Debido a variaciones en la densidad de huesos, tamaño y masa así como efectos de anillo en tejidos blandos y articulaciones hace que diferentes lugares de la piel sean diferentes acústicamente. El software desarrollado escucha los impactos y los clasifica. Se puede relacionar los diferentes puntos en la piel con distintos comandos interactivos.

El sistema tiene la resolución suficiente como para diferenciar hasta cinco zonas de contacto próximas entre sí con una precisión de aproximadamente el 95 %, funciona incluso si el usuario se encuentra en movimiento. Las vibraciones de cada toque son recogidas por el sistema y transmitidas vía una señal inalámbrica (Bluetooth) hasta el dispositivo, para que la interprete y actúe en consecuencia [58].

Las funcionalidades ofrecidas son variadas, algunas de las aplicaciones posibles sería controlar la reproducción de música, responder una llamada, buscar un contacto en nuestra agenda, jugar un juego simplemente tocando nuestros antebrazos. Por ejemplo, el reproductor de música se controlaría sin sacarlo del bolsillo; dos toques en la palma de la mano para reproducir, un toque en el meñique para pasar a la siguiente canción, etc. Las últimas demostraciones se realizaron en el 2010, Microsoft comentó que actualmente este proyecto está en activo desarrollo.

Myo Band. Intel ha invertido (junto con Spark Capital) en Thalmic Labs, los responsables del desarrollo de un brazalete que permite a quien lo usa, controlar interfaces con sus músculos.

Myo band es un brazalete que una vez colocado, monitorea los gestos que hagamos con brazo y manos, concretamente los movimientos de los músculos, y los convierte en órdenes para controlar una interfaz. Cada gesto que realizamos genera una contracción diferente de los músculos, las cuales se traducen en
una orden. La gran ventaja de este sistema basada en los músculos es que no se necesita una cámara por lo que su enfoque es idóneo para esos “dispositivos vestibles” que queremos controlar en entornos en los que la voz no es posible o adecuada.

Figura 32. Myo Band.

La compañía ofrece facilidades a los desarrolladores para que hagan correr sus aplicaciones en Android o iOS, también para que creen nuevas aplicaciones que permitan al dispositivo hacer de todo, desde controlar sistemas de realidad virtual, instrumentos musicales, hasta inclusive poder controlar persianas mediante el uso del brazalete MYO. Puede conectarse mediante Bluetooth 4.0 a la pc, a la videoconsola o incluso se puede manejar un dron.

7.3. Aplicaciones

- **Medicina:** La tele-cirugía permite a los cirujanos realizar intervenciones quirúrgicas remotas mediante el uso de robots o interfaces hápticas, que resultan útiles al intentar minimizar los daños ocasionados por el uso de procedimientos invasivos (laparoscopía/radiología de intervención), de manera que si el cirujano comete un error en la intervención, el dispositivo háptico puede generar una fuerza en contraposición (previamente programada) que evita daños al paciente [63].
- **Entretenimiento:** Como ya se mencionó anteriormente, los dispositivos hápticos son ideales para los videojuegos, existe una transferencia bidireccional entre los jugadores y los entornos virtuales, la experiencia vivida gracias a estos dispositivos crea un ambiente más real.
- **Educativo:** Proporcionando a los estudiantes la posibilidad de experimentar fenómenos a escalas nano y macro, escalas astronómicas, como entrenam-
miento para técnicos, etc [48]. Estas tecnologías también pueden dirigirse a estudiantes invidentes quienes pueden practicar y aprender acerca de los objetos 3D en el espacio libre.

- **Diseño:** Asistir a ingenieros, arquitectos y diseñadores mediante la integración de los dispositivos hápticos con los sistemas de Diseño asistido por computadora (CAD), con lo cual el usuario puede manejar libremente los componentes de un conjunto en un entorno inmersivo.

7.4. Análisis tecnológico y social. Futuro

Las tecnologías hápticas han facilitado la manipulación de objetos en entornos virtuales de forma natural, no sólo se han aplicado al campo del entretenimiento sino que han llegado a otras áreas de aplicación muy importantes como son la salud y la educación. En el primer caso, la introducción de este tipo de tecnología supone una **reducción de las tareas del profesional**, a la vez que tareas, que antes eran complejas y minuciosas de realizar debido a su alto grado de precisión, actualmente se realizan por medio de estas interfaces con seguridad, ya que éstas generan en el usuario una fuerza cuando se cometen determinados errores. Esto último no es un dato menor, por ejemplo, para el 2013 en los EE.UU, los errores médicos constituían la tercera causa de muerte, después de las muertes por enfermedad cardiovascular y cáncer7. De nuevo, se hace el mismo análisis que cuando se hablaba de dispositivos dedicados a la medicina en RA y RV, la **capacitación** es la clave para el uso correcto de estos equipos médicos.

En el segundo caso, si bien su uso ha sido más modesto, las tecnologías para el aprendizaje siempre resultan motivadoras pues el éxito de toda cultura radica en la educación. En este campo, la **accesibilidad** de los dispositivos hápticos está presente, es decir, están **dirigidas tanto a personas videntes como no videntes**, permitiendo que las personas invidentes perciban la información en la misma medida que los videntes, posibilitando así un nivel de aprendizaje más equitativo. Al respecto, uno de los retos de las interfaces hápticas es el diseño de las mismas, es necesario identificar las necesidades y expectativas de los usuarios finales involucrándolos en los procesos del diseño.

Las interfaces táctiles de usuario han traído consigo una característica peculiar, la interacción sobre su superficie es complicada, es decir, para poder manipularla el usuario necesita generalmente mirar la pantalla, a diferencia de aquellos dispositivos con teclados o interruptores cuya respuesta táctil es clara ya que saltan de una posición fija a otra. Éste es un aspecto a tener en cuenta en determinados escenarios donde las interfaces táctiles pueden convertirse en fuente de distracción, ejemplo: en los automóviles, donde la distracción es la primera causa de accidentes. Para evitar esto, Matthaeus Krenn8 desarrolló una

7 Artículo del Journal of the American Medical Association (JAMA), revista médica de más amplia difusión en el mundo.
8 Más información sobre esta tecnología: http://matthaeuskrenn.com/new-car-ui/
interfaz táctil en la que se podrá tocar la pantalla para controlar todo tipo de opciones, pero no se necesitará mirarla. El sistema se basa en la cantidad de dedos que usamos al tocar la pantalla y en la forma en la que los movemos. Lo interesante es que no importa donde coloquemos los dedos: el gesto que se ejecuta a continuación es el que determinará la opción a modificar [65].

Por las aplicaciones descriptas en el apartado anterior, se ve como las interfa-
cestes de realimentación de fuerza están ligada a la robótica, de hecho su evoluci-
ón se ha debido en gran parte al avance de esta. Más atrás se encuentran las interfa-
ces táctiles, cuyo principal problema está en que las sensaciones proporcionadas
actúan en un área limitada, como se dijo, normalmente en la punta de los dedos.
Se necesitan de nuevos estudios que identifiquen los tipos de feedback de tipo
táctil para aplicaciones específicas y el desarrollo de la tecnología apropiada para
manifestar este feedback.

El auge de los dispositivos móviles, los avances en realidad aumentada y el
desarrollo e investigación en las áreas hápticas, nos dejan la sensación de que en
un futuro no muy lejano la fusión de estas tecnologías nos permitirían interactuar
de una forma completamente novedosa con los objetos que nos rodean, no nos
limitaríamos simplemente a usarlos, sino que los “sentiríamos”, y porqué no abrir
paso también a la investigación de otras tecnologías y técnicas que exploten los
otros sentidos como el olfato y el gusto.

7.5. Cine Cuatridimensional

Si bien no es una forma de interfaz háptica, guarda relación con “sentir” el
mundo virtual y hacerlo más real, por lo que pareció interesante introducir el
nuevo concepto de cine que se ha empezado a manejar. Recibe el nombre de cine
4D, es una tecnología que busca introducir a los espectadores en el ambiente de
la película, como si estuvieran dentro de ella. Esto lo logra recreando en la sala de
proyección las condiciones que se ven en la pantalla, como niebla, lluvia, viento,
luces, sonidos más intensos u olores, así como vibraciones en los asientos, en otras
palabras, un conjunto de efectos físicos reales. En el gráfico puede visualizarse
la disposición de cada uno de estos elementos dentro de la sala de cine 4D.

Es una versión mejorada de cine 3D -aunque también se utiliza con películas
en formato 2D- que hace mucho más realista una película, si en ésta llueve, en
la sala arrojan agua; si hay mucho aire, en la sala expulsan aire; si hay escenas
en la nieve, en la sala hace mucho frío. En acciones con intensos movimientos,
los asientos vibran o se mueven, pueden activarse lanzallamas o disparos con
lanza proyectiles de plástico, en películas donde hay este tipo de circunstancias.
Algunos países que cuentan con estos cines son México, Perú, Chile, EE.UU (Los
Ángeles fue el primero en inaugurarlo).
8. Interfaces con Consolas

Para esta tecnología se realiza una compilación sobre las distintas interfaces que cambiaron la forma de relacionarnos con los videojuegos, adjuntadas en esta sección por tener características y aplicaciones similares. En esta sección se realiza la recopilación de conceptos y aplicaciones, desarrolladas sobre el marco de interfaces de control no convencionales sobre videojuegos, pero no así novedosas ya que desde hace algunos años conocemos los conceptos.

8.1. Wii

Consola producida por Nintendo en colaboración con IBM y ATI perteneciente a la séptima generación de consolas. La tecnología resultó ser una novedad tras su lanzamiento por la peculiaridad de su mando inalámbrico, el cual detecta movimientos. A diferencia de las demás consolas como Xbox 360 y PS3 que se lanzaron como de séptima generación, Wii dio un mayor salto al cambiar la forma en que pensábamos de los videojuegos, era completamente diferente.

Uno de sus objetivos principales fue que nuevos jugadores se integren en el mercado más que enfocarse en el sistema en sí o preocuparse por sus competidores, en esa época Sony con el PS Move. Así lo hicieron, lograron incorporar videojuegos que simulan una gran variedad de juegos de la vida real, como golf.
Un estudio publicado en la British Medical Journal señala que los jugadores de Wii usan más energía que jugando a videojuegos sedentarios. Si bien se indica en dicho documento que el incremento en la energía puede ser benéfico para el control del peso, no es un sustituto adecuado para los ejercicios regulares. Otro estudio publicado en Physical Therapy de la American Physical Therapy Association se centró en el uso de Wii para la rehabilitación de un adolescente que padecía de parálisis cerebral. Se considera como el primer documento de investigación que muestra los beneficios de terapia física resultantes del uso de una consola de videojuegos. Es importante añadir que los investigadores coincidieron en que la terapia física con Wii era más bien un complemento a las técnicas tradicionales de rehabilitación. En mayo de 2010, la Asociación Americana del Corazón (AHA, por sus siglas en inglés) apoyó a la consola como recurso para alentar a la gente sedentaria a comenzar con rutinas físicas de acondicionamiento. Así, la asociación “Un Corazón” acompaña a dos de los juegos más activos de la consola: Wii Fit Plus y Wii Sports Resort [14].

Pizarras Interactivas: el wiimote puede rastrear las fuentes de rayos infrarrojos, también puede rastrear plumas que tienen un LED infrarrojo en la punta. Apuntando un Wiimote a una pantalla de proyección o a la pantalla LCD, se puede crear pizarras interactivas de muy bajo costo.

Silla de ruedas motorizada: investigadores desarrollan un software que permite utilizar el mando de la consola Wii para desplazar una silla de ruedas motorizada [24].

8.2. PS Move

El PlayStation Move es un mando para la consola PlayStation 3, el cual por medio de sensores detecta movimientos para controlar comandos en una variedad de videojuegos.

Sus componentes:

1. **Motion Controller.** Mando principal, forma alargada y una esfera que se ilumina en diferentes colores. La cámara PlayStation Eye detecta la posición en el espacio.
2. **Navigation Controller.** Es un modo que complementa al Motion controller con funciones como los botones L1, L2 y L3.
3. **PlayStation Eye.** Reconoce los controles del PlayStation Move detectando movimientos para controlar el juego.

8.3. Kinect

Kinect permite a los usuarios controlar e interactuar con la consola sin necesidad de tener contacto físico con un controlador de videojuegos tradicional,
mediante una interfaz natural de usuario que reconoce gestos, comandos de voz, y objetos e imágenes. A diferencia de Wii y PS Move, con Kinect no se necesita ningún mando. El dispositivo tiene como objetivo primordial aumentar el uso de la Xbox 360, más allá de la base dejugadores que posee en la actualidad.

El hardware que utiliza se compone fundamentalmente de un sensor de movimiento, cámara para mejorar la detección 3D y un mapa de profundidad.

La consola Xbox One, y el Kinect 2.0 incluyen detección de 6 personas y 1080 píxeles de resolución. También se filter una nota en la que mencionaba que en futuras versiones de Microsoft Windows se requeriría obligatoriamente un sensor de gestos y movimientos, probablemente esto nos indique que se está desarrollando software o hardware, en el mensaje de correo también mencionaba algunos datos en relación con el sistema futuro en nombre clave Midori [8].

Entre sus aplicaciones fuera del contexto de videojuegos el Kinect de Microsoft puede utilizarse para reconocer y escanear un espacio en una sala, produciendo modelos 3D, texturas, mapas de relieve, profundidad y una escena interactiva. Se puede utilizar el Kinect para controlar sistemas de realidad virtual por medio de gestos. Sus aplicaciones solo se expanden gracias a su capacidad de detectar e interpretar gestos y movimiento tridimensional, y se pueden controlar varios dispositivos. Se está estudiando la posibilidad de utilizar el Kinect en la medicina para realizar operaciones minuciosas durante cirugías. Controlar robots que interpretan las señales de la mano y siguen direcciones como el Quadrocopter [24].

Estos dispositivos están destinados a una mayor gama de público de diferentes edades, ya que los mandos para controlar el juego recaen en movimientos del lenguaje natural del cuerpo.
Figura 35. Puntos proyectados por los sensores kinect vistos con visión nocturna.

Figura 36. Puntos proyectados por los sensores kinect vistos con visión nocturna en una sala entera.

8.4. Análisis Tecnológico y Social

Estas tecnologías cambian el paradigma de videojuegos a los que estamos acostumbrados desde hace décadas y en los últimos años presentaron una novedad. La forma de relacionarnos con las máquinas cambiaron drásticamente, todo un mundo nuevo de posibilidades se abre gracias a estas tecnologías basadas en lenguaje natural corporal. Aumenta el número de personas que interactúan con las máquinas, que tal vez antes no se relacionaban por la limitación que presen-
taban las interfaces.

Las aplicaciones que tienen estas tecnologías son maravillosas, desde sus desarrollos para videojuegos y realidad virtual su estudio se extendió a la medicina y al control de otros tipos de dispositivos. Ayuda de terapia física para personas con capacidades físicas limitadas o con problemas de obesidad por medio de juegos. Los sensores kinect pueden detectar contexto tridimensional, sus aplicaciones van desde detección de gestos y movimientos hasta prevención de accidentes.

9. Brain Computer Interface y Emotiv System

9.1. Brain Computer Interface

Fundamentalmente esta tecnología consiste en procesar señales producidas por nuestros cerebros para controlar dispositivos como cursores, sillas de ruedas, extremidades robóticas, entre los principales, todo esto en tiempo real y en algunos casos los análisis no necesitan realizarse en tiempo real como en interpretación clínica de muestras prolongadas.

Tiene una aplicación más amplia en la medicina, ayuda a mejorar la calidad de vida de las personas con capacidades físicas limitadas y pacientes diagnosticados con enfermedades motor-neuronales como el ALS (Amyotrophic Lateral Sclerosis) popularizado con el Ice Bucket Challenge en 2014. En donde la habilidad más importante parece ser la comunicación [19].

En el 2012 personas con parálisis controlan un brazo robótico para un estudio realizado en colaboración por BrainGate y varias instituciones en Estados Unidos, y el caso más publicitado fue el de una mujer de 58 años que paralizada por casi 15 años usó sus pensamientos para controlar el brazo robótico, agarrar una botella de café, servirse a ella misma y poner la botella en la mesa. El objetivo de la investigación fue el de desarrollar una tecnología que pueda restaurar la independencia y movilidad para personas con parálisis o pérdida de extremidades. Los resultados fueron alentadores, no solo con recolectar la información de agarrar y servirse, mucho más que eso, fue la sonrisa de la mujer cuando pudo hacerlo por ella misma. Se reportó que además el control de un brazo robótico es repetible, porque varios sujetos con un tipo específico de parálisis lograron controlarlo [20].

La personalidad más conocida que utiliza esta interfaz es Stephen Hawking. En el 2012 investigadores lograron traducir las ondas cerebrales de Stephen en palabras. El sistema desarrollado es denominado iBrain y utiliza un receptor no invasivo posicionado sobre la cabeza, el cual recibe e interpreta distintas ondas cerebrales. Utiliza un algoritmo llamado SPEARS el cual analiza y codifica las señales a texto presentados en un lector.

El dispositivo iBrain puede tener otras aplicaciones como diagnosticar apnea de sueño, estudiar el autismo y monitorear otras condiciones cerebrales [19].
Figura 37. Mujer controlando brazo robótico, sirviéndose a sí misma después de haber pasado 15 años con parálisis.

Técnicas para obtención de señales [1].

1. **Invasivas**: Un implante cerebral o implante neural, es un dispositivo que se conecta directamente en el cerebro de un sujeto biológico, en corteza cerebral o en la superficie del cerebro. Las prótesis modernas buscan reemplazar zonas disfuncionales del cerebro dañadas por lesiones. Estos implantes pueden ser para enviar o recibir información al cerebro.

 La FDA (Food and Drug Administration) autorizó el uso de los implantes para enviar señales al cerebro para el tratamiento de las siguientes enfermedades: Parkinson, Síndrome de Tourette, Depresión severa y Pánico Crónico.

2. **No invasivas**: Se utilizan varios medios para obtener la información. Las imágenes por resonancia magnética son una forma, miden la respuesta de los flujos sanguíneos durante la actividad neuronal en el cerebro o en la médula espinal. Magneto-encefalografía, mide los campos magnéticos generados por la actividad eléctrica en el cerebro mediante sensores. Entre otras técnicas se encuentran la tomografía de emisión de positrones (PET), resonancia magnética espectroscópica (MRS), imágenes por ultrasonidos en 2D, tomografía cerebral por computación activa de microondas (EMIT), topografía óptica (NIRS) que utiliza los principios de cambios del espectro de la luz infrarroja. Por último el electroencefalograma (EEG).

9.2. **EEG**

Electroencefalograma es un medidor de la actividad eléctrica del cerebro por medio de electrodos posicionados en lugares estratégicos sobre la superficie de
la cabeza, en casos especiales, sobre la superficie del cortex cerebral.

Es un medio por el cual implementar esta tecnología de forma no invasiva, es decir obtiene las señales del cerebro mediante sensores conectados a la cabeza externamente. Presenta un problema que se intenta mejorar, las tasas de transmisión de la información son relativamente bajas alrededor de 1 bit/sec [31].

Existen en el mercado varios dispositivos que detectan señales cerebrales utilizando la tecnología EEG los cuales tienen una gran variedad de aplicaciones. Algunos de estos dispositivos son:

- **Mindwave mobile**: El MindWave Mobile es un dispositivo de apariencia muy similar a unos cascos, que afirma ser capaz de “leer” la mente del usuario que se lo ponga. Para ello utiliza una serie de puntos de contacto con nuestra cabeza, que le permite (en teoría) conocer lo que estamos pensando y así mandar esa información vía Bluetooth a cualquier dispositivo compa-
Figura 40. Sensores no invasivos.

tible: desde televisores hasta auriculares, pasando como no, por los teléfonos móviles.

- **Necomimi**: Son orejas de gatitos kawaii diseñados en Japón inspirados en el anime. Reaccionan permanentemente a nuestro estado de ánimo, gracias a un sensor que lee nuestras ondas cerebrales.

- **MindBall**: Mindball se basa en las ondas Alpha y Theta que emite el cerebro en estado de relajación y que se muestran gráficamente en una pantalla. El juego mide la capacidad de concentración de dos jugadores. El más tranquilo emitirá más ondas de este tipo, y por tanto, resultará vencedor, ya que las ondas son el motor que mueve la bola.

- **Star Wars Force Trainer**: Utilizando un sistema de electroencefalografía muy simple, puedes accionar un pequeño ventilador utilizando tu mente y este hace que una pequeña pelotita se eleve. Mientras más te concentres, más rápido girará el ventilador.

- **Xwave Sport**: Es una diadema con la capacidad de leer el estado de tu cuerpo y enviar la información a tu smartphone. La diadema tiene un pequeño sensor de lado izquierdo que se dedica a evaluar el rendimiento físico y estado mental para saber si tu cerebro está fatigado o puedes hacer más ejercicio.

- **MyndPlay**: Para entretenimiento como películas y juegos. Mientras estás viendo una película, si generas suficientes ondas cerebrales (prestar mucha atención a la película y no distraerte) puedes hacer que cambie la historia. O, en el caso de juegos, un combate entre dos luchadores y el que más atención preste, ganará.

- **Neural Impulse Actuator**: Dispositivo dirigido a los gamers y que permite controlar lo que ocurre en pantalla moviendo los músculos de tu rostro, ya que cada acción está relacionada a un gesto facial específico.

- **Emotiv Epoc**: Como los dispositivos anteriores, este periférico está dirigido al entretenimiento, controlar juegos de PC.

- **Intendix**: Interfaz para escribir pintar o expresarse con la mente. Con él se puede tuiter por ejemplo. Consiste en controlar un cursor y las letras del alfabeto. Como controlar el mouse y el teclado con la mente.
• **OpenEEg:** Uno de los proyectos que desarrollaron una gran variedad de hardware basado en EEG. Otros proyectos parecidos son de desarrollo de software de código abierto dirigido a estos dispositivos.

Otras aplicaciones de esta tecnología involucran wearable computing como cámaras que almacenan imágenes y actividad cerebral en un momento determinado para luego analizar los datos obtenidos. Con esto se puede descubrir emociones que antes no estábamos conscientes de su presencia. Realizar tratamientos psicológicos para tratar por ejemplo la depresión.

9.3. Emotiv Systems

Es una empresa australiana de desarrollo de esta tecnología basado en EEG. Uno de sus principales productos son los Emotiv EPOCs anteriormente citados, son periféricos utilizados para controlar juegos de PC por medio de la mente de los usuarios y por sus expresiones faciales. El dispositivo utiliza 14 electrodos a diferencia de los EEGs utilizados en medicina que cuentan con 19 electrodos.

![Figura 41. Dispositivo Emotiv EPOC](image)

El Emotiv EPOC detecta las siguientes señales del usuario:

1. **Pensamientos consientes.** Detecta 13 movimientos, 6 de dirección, 6 de rotación y uno de visualización.
2. **Emociones.** Aburrimiento, meditación, exaltación y frustración son algunos de los sentimientos que pueden ser medidos y detectados.
3. **Expresiones faciales.** Sonrisa, posición de las cejas y parpados pueden ser interpretados por sensores que recolectan señales de los músculos faciales.
4. **Rotación de la cabeza.** Velocidad de giro.

Las aplicaciones con la tecnología de BCI solo parecen estar incrementando desde la medicina al arte, en donde una persona puede controlar un cursor, texturas y colores para generar gráficos en computadoras.

![Imagen producida por un paciente de ALS.](image)

Figura 42. Imagen producida por un paciente de ALS.

9.4. **Análisis Tecnológico y Social**

Sobre estas tecnologías residen muchos rumores como los que la ciencia ficción nos sugestionó, pero alguna de éstas pueden ser reales como el control mental y la telepatía.

Investigadores en la Universidad de Harvard crearon en 2013 la primera interfaz no invasiva entre un humano y una rata, con pensar en algo específico se puede controlar la cola de la rata (esto se puede ver en un demostración disponible en youtube). Con este avance se está más cerca de crear vínculos telepáticos entre dos personas [26].

En los últimos años hubo muchos avances en la interfaz cerebro computadora donde tus pensamientos son escuchados e interpretados por computadoras, casi nada se desarrolló en la forma inversa, que una computadora envié señales en forma de pensamiento al cerebro ya que es más difícil que una computadora pueda saber lo que una persona piensa porque varias partes de nuestro cerebro trabaja para un pensamiento, y básicamente no se encontró todavía una forma de interpretar. Lo que sí se puede hacer es enviar señales y estimular regiones del cerebro para crear reacciones, por ejemplo una parte específica de la corteza cerebral encargada del movimiento de los dedos, no se puede dar una instrucción específica para un movimiento determinado de algún dedo, pero se los puede hacer sacudirse [26].

En un futuro los investigadores deben buscar la transmisión de ideas más complejas como hambre u otras necesidades. Eventualmente se llegará a la transmisión humano-humano por este medio con una tecnología bidireccional, se habla
también de que en el futuro todo esté vinculado telepáticamente. Con esto nacen asuntos éticos que atender, teniendo en cuenta que se puedan realizar control mental. Es por eso que la FDA tiene limitado este tipo de envío de señales al cerebro para ayudar a tratar cierto tipo de enfermedades como el síndrome de Tourette y el Parkinson.

Podemos mostrarnos renuentes a colocar un dispositivo en nuestro cerebro o solo experimentar con él. Pero debemos ser conscientes de las consecuencias de evitar su desarrollo y de su uso también. Desarrollar la tecnología respetando, y teniendo en mente siempre los aspectos que puedan comprometer la privacidad y los derechos humanos.

Dentro de todo, esta tecnología ayuda en gran medida y puede seguir ayudando a mejorar la calidad de vida de las personas, especialmente a las que sufren enfermedades o tienen capacidades físicas limitadas.

10. Interfaces de Lenguaje Natural

¿Cómo sería este mundo si pudiésemos comunicarnos con las máquinas de la misma forma en la que nos comunicamos con los seres humanos?. Esta posibilidad borraría la línea que hoy separa al grupo de personas que utilizan la tecnología porque están preparadas para manipularla y el grupo de personas que no la utilizan porque no cuentan con la preparación suficiente para hacerlo, quienes requieren saber cómo usarlas por ser una tecnología compleja. Es innegable que las computadoras y los dispositivos móviles forman parte de nuestra cotidianidad, están presentes en todos los ámbitos de nuestra vida: en la casa, en el lugar de trabajo, en los servicios públicos, etc., para que su uso sea extensivo éstos deben tener interfaces intuitivas y de fácil interacción. Las interfaces de usuario nacen como respuesta a esta necesidad de facilitar la interacción con las máquinas.

La evolución de la computación no se limita solo al desarrollo de hardware más poderoso y software con mayores prestaciones, sino también a la investigación para el desarrollo de interfaces de usuario más poderosas, fáciles de usar y con la característica de que éstas sean las que se adapten al usuario y no viceversa. Esta búsqueda ha llevado al desarrollo de Interfaces de Usuario de Lenguaje Natural, éstas son un tipo de interfaz que permiten la comunicación entre humanos y máquinas, donde los fenómenos lingüísticos, como los verbos, frases y cláusulas actúan como controles de dicha interfaz para crear, seleccionar y modificar datos en las aplicaciones de software [28]. Al emplear mecanismos basados en habilidades humanas como la voz por ejemplo como datos de entrada a la interfaz, que resulta más familiar para el usuario, la interacción hombre-máquina se vuelve más natural.
En el diseño de la interfaz de lenguaje natural las interfaces son buscadas por su velocidad y facilidad de uso, pero además hay factores como la comprensión, que añaden una dificultad significativa, ya que se pueden encontrar entradas ambiguas en el sistema [28]. En breve se explicará con más detalle todos los problemas asociados al reconocimiento y procesamiento del lenguaje natural.

Las interfaces de lenguaje natural componen un área activa de estudio en el campo del procesamiento del lenguaje natural. Una intuitiva interfaz de lenguaje natural en general es uno de los grandes objetivos activos de la Web Semántica [28].

10.1. Dificultades del reconocimiento

Los sistemas de reconocimiento se puede dividir en dos tipos principales. Sistemas de reconocimiento de patrones entrenados, éste compara los patrones con otros patrones ya conocidos y clasificados para determinar la similitud y por tanto el reconocimiento. Y por otro lado tenemos los Sistemas fonéticos que utilizan el conocimiento del cuerpo humano (la producción del habla y audición) para comparar las características del lenguaje (fonética, tales como sonidos de las vocales). Los sistemas más modernos se centran en el enfoque de reconocimiento de patrones, ya que combina muy bien con las técnicas de computación actual y tiende a tener una mayor precisión [28].

Aun así existen una serie de factores que dificultan estos procesos, ya que influyen en el tratado de la señal y por tanto en el reconocimiento. Algunos de ellos son los siguientes: [28]

- **La variación fonética inter-locutor e intra-locutor:** La variación inter-locutor, da lugar a que cuando se está emitiendo una secuencia concreta de palabras, con el mismo estilo de habla, y sin diferencias geográficas o sociales, aun así existan variaciones en el lenguaje. Por otro lado la variación intra-locutor, estudia qué cambia en cada persona cuando habla espontáneamente o cuando lee.
- **Los estilos de habla:** Entre todos los hablantes existe un amplio repertorio de estilos que pueden modificar la inteligibilidad de la palabra.
- **Las “disfluencias” en el habla espontánea:** se refiere al conjunto de variaciones que cambian la fluidez de la lingüística. Entre ellas encontramos las pausas, repeticiones, palabras truncadas, alargamientos vocálicos, interrupciones, frases inacabadas e incluso variaciones en la velocidad.
- **Las características del entorno:** Las variaciones ambientales del entorno pueden entorpecer significativamente el procesado de la señal. Aquí se encuentran ruidos que pueden distorsionar o enmascarar, y cambios de sonido ambiente que pueden modificar la señal de forma transitoria.

9 Web extendida, dotada de mayor significado en la que cualquier usuario en Internet podrá encontrar respuestas a sus preguntas de forma más rápida y sencilla gracias a una información mejor definida [5].
10.2. Utilidades y Aplicaciones

Algunos de los principales usos son: [28]

- **Dictado**: éste es el uso más común para los sistemas de ASR (reconocimiento automático del habla) en la actualidad. Esto incluye transcripciones médicas, dictados legales y comerciales, así como procesamiento de textos en general.
- **Aplicaciones de mando y control**: estos sistemas están diseñados para realizar funciones y acciones, un ejemplo sería la telefonía.
- **Medicina y discapacidad**: muchas personas tienen dificultades para escribir, debido a limitaciones físicas, la distrofia muscular, y muchos otros. Por ejemplo, las personas con problemas auditivos pueden usar un sistema conectado a su teléfono para convertir el discurso de la persona que llama en texto.
- **Aplicaciones integradas**: algunos teléfonos móviles más modernos incluyen reconocimiento de voz que permiten expresiones como “Call Home”.

10.3. Procesamiento de lenguajes naturales

El procesamiento de lenguajes naturales (PLN) es un campo de las ciencias de la computación, inteligencia artificial y lingüística que estudia las interacciones entre las computadoras y el lenguaje humano. El PLN se ocupa de la formulación e investigación de mecanismos eficaces computacionalmente para la comunicación entre personas y máquinas por medio de lenguajes naturales. El PLN no trata de la comunicación por medio de lenguajes naturales de una forma abstracta, sino de diseñar mecanismos para comunicarse que sean eficaces computacionalmente -que se puedan realizar por medio de programas que ejecuten o simulen la comunicación- [42].

Dificultades en el procesamiento de lenguajes naturales. No solo el reconocimiento de lenguajes naturales presenta problemas, también su procesamiento. A continuación se listan las dificultades del mismo [42].

- **Ambigüedad**: El lenguaje natural es inherentemente ambiguo a diferentes niveles:
 1. **A nivel léxico**, una misma palabra puede tener varios significados, y la selección del apropiado se debe deducir a partir del contexto oracional o conocimiento básico. Muchas investigaciones en el campo del procesamiento de lenguajes naturales han estudiado métodos de resolver las ambigüedades léxicas mediante diccionarios, gramáticas, bases de conocimiento y correlaciones estadísticas.
 2. **A nivel referencial**, la resolución de anáforas y catáforas implica determinar la entidad lingüística previa o posterior a que hacen referencia.
 3. **A nivel estructural**, se requiere de la semántica para desambiguar la dependencia de los sintagmas preposicionales que conducen a la construcción de distintos árboles sintácticos. Por ejemplo, en la frase Rompió el dibujo de un ataque de nervios.
4. **A nivel pragmático**, una oración, a menudo, no significa lo que realmente se está diciendo. Elementos tales como la ironía tienen un papel importante en la interpretación del mensaje.

Para resolver estos tipos de ambigüedades y otros, el problema central en el PLN es la traducción de entradas en lenguaje natural a una representación interna sin ambigüedad, como árboles de análisis.

- **Detección de separación entre las palabras**: En la lengua hablada no se suelen hacer pausas entre palabra y palabra. El lugar en el que se debe separar las palabras a menudo depende de cuál es la posibilidad que mantenga un sentido lógico tanto gramatical como contextual.

- **Recepción imperfecta de datos**: Acentos extranjeros, regionalismos o dificultades en la producción del habla, errores de mecanografiado o expresiones no gramaticales, errores en la lectura de textos mediante OCR\(^\text{10}\).

Aplicaciones. Las principales tareas de trabajo en el PLN son:

1. **Síntesis de voz**: La síntesis de habla es la producción artificial de habla humana. Llamado a menudo en inglés text-to-speech (TTS), en referencia a su capacidad de convertir texto en habla. La síntesis de voz ha sido durante mucho tiempo una importante herramienta de tecnología asistida y su aplicación en este ámbito es significativo y generalizado. Permite que se puedan retirar barreras ambientales para personas con una amplia gama de discapacidades. La mayor aplicación ha sido en el uso de lectores de pantalla para personas con discapacidad visual, pero los sistemas de texto-a-voz se utilizan habitualmente por las personas con dislexia y otras dificultades de lectura, así como para la pre-alfabetización de niños (en cuyo caso, permite seleccionar la lectura de letras, sílabas, palabras y frases con velocidad muy lenta). También se emplea con frecuencia para ayudar a las personas con grave discapacidad del habla, generalmente a través de un dispositivo de generación de voz dedicado. Las técnicas de síntesis de voz también se utilizan en las producciones de entretenimiento, como juegos y animaciones [44].

2. **Generación de lenguajes naturales**: Es el proceso de la construcción de un texto en lenguaje natural para la comunicación con fines específicos. Un generador de lenguaje natural típicamente tiene acceso a un gran conjunto de conocimiento del cual ha de seleccionar información para presentar a los usuarios en varias formas. El generar texto es, pues, un problema de toma de decisiones con múltiples restricciones: de conocimiento proposicional, de herramientas lingüísticas disponibles, de los objetivos de la comunicación del usuario a quien se dirige el texto, y de la situación y del discurso pasado [38].

\(^{10}\) Reconocimiento Óptico de Caracteres, es una tecnología que permite convertir diferentes tipos de documentos, tales como documentos en papel escaneados, PDF archivos o imágenes captadas por una cámara digital en datos con opción de búsqueda y funcionalidad de editar.
3. **Traducción automática:** Tomar el texto escrito en un lenguaje y traducirlo a otro, manteniendo el mismo significado. En general el proceso de traducción automática sigue tres pasos: primero, el texto en el lenguaje original se transforma a una representación intermedia, luego, de acuerdo a la morfología del lenguaje destino, se realizan modificaciones a esta representación intermedia y por último ésta se transforma al lenguaje destino [60]. En la actualidad se obtienen altos niveles de calidad para la traducción entre lenguas romances (español, portugués, catalán o gallego, etc.). Sin embargo, los resultados empeoran ostensiblemente cuanto más tipológicamente alejadas sean las lenguas entre sí, como es el caso de la traducción entre español e inglés o alemán [45].

4. **Respuesta a preguntas:** Es un tipo de recuperación de la información. Dada una cierta cantidad de documentos (tales como World Wide Web), el sistema debería ser capaz de recuperar respuestas a preguntas planteadas en lengua natural [34]. Ejemplos de esta aplicación son Wolfram Alpha y Siri.

5. **Recuperación de la información:** Es la ciencia de la búsqueda de información en documentos electrónicos y cualquier tipo de colección documental digital, encargada de la búsqueda dentro de éstos mismos, búsqueda de metadatos que describan documentos, o también la búsqueda en bases de datos relacionales, ya sea a través de internet, una intranet, y como objetivo realiza la recuperación en textos, imágenes, sonido o datos de otras características, de manera pertinente y relevante [35].

6. **Extracción de la información:** Es un tipo de recuperación de la información cuyo objetivo es extraer automáticamente información estructurada o semiestructurada desde documentos legibles por una computadora. Una aplicación típica de IE es el escaneado de una serie de documentos escritos en una lengua natural y rellenar una base de datos con la información extraída [37].

7. **Análisis de sentimientos:** Es la identificación y extracción de información subjetiva. También llamado “minería de opiniones”, ese proceso generalmente involucra el uso de herramientas de PLN y software de análisis de textos para automatizar el proceso. La forma básica de análisis de sentimientos es
una clasificación polarizada de sentimientos que puede asignar calificaciones de en un rango de -10 a 10 que se basa en el aprendizaje para evaluar emociones tanto negativas como positivas en corpus etiquetados de entrenamiento. Técnicas avanzadas permiten analizar gramaticalmente y descomponer la oración. La minería de opiniones tiene un mercado ávido de conocer, indexar y resumir opiniones en grandes volúmenes de texto con fines de mercadeo y manejo de imagen [60].

10.4. Análisis tecnológico y social. Futuro

El procesamiento de lenguaje natural es un área de investigación todavía en estado de desarrollo. Existen todavía desafíos que vencer para hacer que el procesamiento de lenguaje natural sea más útil en la práctica. El principal obstáculo a superar es la alta ambigüedad del lenguaje natural en todos los niveles. Existe la necesidad de seguir buscando nuevos enfoques o mecanismos para superar las dificultades actuales, el trabajo es bastante complejo y sutil, se necesita contextualizar, entender lo que el usuario realmente quiere decir porque el costo del error puede ser muy alto.

Si bien todavía no ha alcanzado su madurez, en los últimos años se han dado avances importantes, hoy es posible hablar de traducción automática, sistemas de recuperación de información, elaboración automática de resúmenes, interfaces en lenguaje natural, reconocimiento de voz, etc., que han facilitado de la vida de muchas personas, sobre todo de personas discapacitadas que han encontrado en estas tecnologías la posibilidad de suplir alguna limitación física o problema auditivo, visual. Por más que la evolución sea lenta es posible visionar que la interacción con el mundo digital, los dispositivos y sistemas que nos rodean, cambiará radicalmente.

En primer lugar, se podría utilizar el procesamiento de lenguaje natural para tener un agente en la casa. Por medio del lenguaje natural el usuario podría dar un conjunto de órdenes al agente de la misma manera en cómo lo haría con otra persona. A continuación se ilustra una imagen del tipo de conversación que podrían tener el usuario y el agente.

Por supuesto que existirán limitaciones y aspectos que controlar, sin embargo la forma de relacionarnos resultará natural, los dispositivos serán más flexibles y sobre todo el usuario se olvidará de aprender instrucciones complicadas y/o código para manipularlos.

Además, gracias al diálogo natural sería posible realizar una gran cantidad de transacciones y acceder a un conjunto importante de servicios públicos y privados por medio de la telefonía, manteniendo una conversación con un programa sin que el cliente sea capaz de notarlo (reservas de turnos para consultas médicas, compra de entradas para conciertos, reservas de boletos de avión, entre muchos otros). En este sistema el programa trata de entender la pregunta del usuario y traducirlo internamente a SQL, para ejecutar
(U=usuario=usted, A=agente):

U: Abra la puerta, por favor.
A: ¿Está con seguro, se lo quitó?
U: Sí
A: Listo.

U: Baje la olla de la estufa, por favor.
A: Hay dos ollas, ¿cuál de ellas bajo?
U: La grande.
A: Donde la pongo?
U: En la mesa.
A: Voy a ponerla encima del mantel, está bien?
U: No, mejor déjala en la estufa.
A: Listo.

Figura 45. Conversación usuario-agente. La interacción se realiza por medio del lenguaje natural [15].

la búsqueda en su base de datos correspondiente. Después, el programa conduce el diálogo con el usuario, explicándole los precios, novedades, condiciones, escuchando sus preguntas o comentarios, etc. Hasta finalizar la transacción o finiquitar el acceso al servicio, de nuevo se recalca que no se requerirá del cliente ningún conocimiento previo sobre el manejo de estos programas sino sólo el manejo natural de lenguaje que cotidianamente usa para hablar con otras personas.

Por último, un aspecto muy importante hoy es el acceso a la información. El manejo eficiente de la información (búsqueda, resúmenes, filtrado y alerta, bibliotecas digitales, etc.) supondrá para el usuario acceso a información valiosa, por ser precisa y detallada, lo cual actualmente no se consigue en Internet, es el usuario quien debe adaptarse a Internet y no viceversa. Un paso más hacia el lenguaje natural supondrá un cambio en la representación de la información. Ésta deberá ser más detallada y compleja, así como se requerirá un análisis lingüístico más preciso y completo.

11. Domótica

En los últimos cincuenta años nuestras casas se han ido llenando de nuevos aparatos. Primero llegaron los electrodomésticos como el frigorífico o la lavadora que supusieron un cambio fundamental en las tareas domésticas y en nuestra forma de vida. Hoy nos resulta difícil pensar cómo sería nuestra vida sin ellos. El segundo cambio importante lo produjo la llegada de la televisión y el teléfono que modificaron los hábitos familiares y la manera de relacionarnos y conocer
el mundo. Fueron el primer paso de lo que hoy conocemos como la sociedad de la información. No realizan una tarea física como los anteriores, sino que nos proporcionan toda una serie de servicios. La llegada de los móviles y la cada vez mayor difusión de Internet están suponiendo un nuevo paso en esta dirección. Nos dan la posibilidad de comunicarnos en todo momento y en cualquier lugar, de recibir nuevos servicios y de participar en nuevos grupos y actividades.

A pesar de estos grandes cambios, la estructura y los servicios que nuestras casas nos proporcionan, no se han modificado demasiado. Siguen utilizando técnicas de fabricación y materiales similares sin integrar estas nuevas tecnologías y posibilidades que nos ofrecen. Buscamos en ellas protección, seguridad y confort, un espacio donde vivir, convivir y en ocasiones trabajar, y es aquí donde aparece la domótica. La palabra domótica viene del latín “domus” que significa casa, y de la palabra “informática”. La “casa informatizada” la define el diccionario de la Real Academia Española como “conjunto de sistemas que automatizan las diferentes instalaciones de una vivienda”. De acuerdo a la página web tecnociencia el objetivo de la domótica es la integración de todos los controles en una unidad centralizada, la posibilidad de programación de este control, y la posibilidad de acceder en la distancia, de forma remota, utilizando ya sea un control remoto, una llamada del celular o a través de Internet [59].

Cabe mencionar que una casa domótica no es diferente de una casa tradicional, pues ambas tienen los aparatos domésticos comunes (lavadora, cocina, heladera, microondas, etc) e instalaciones (sistema de riego por aspersión, sistema de calefacción, etc), la diferencia radica en que en el primer caso se introduce un equipo especial que permite controlar estos aparatos e instalaciones ofreciendo a la vez otras funcionalidades con el fin de permitir una mayor calidad de vida. Por lo tanto domótica no implica la inclusión de aparatos adicionales no habituales en el hogar como persianas motorizadas, jacuzzi, sofisticados sistemas de distribución de audio y video para la vivienda, etc.; aunque como se verá todas estas tecnologías disponibles automatizan las tareas del hogar pero sobre todo elevan el nivel de confort de sus miembros.

Al hablar de domótica se hace referencia a tareas tan simples como encender/apagar las luces, subir/bajar las persianas del hogar, iniciar los aspersores de riego del jardín, entre otras actividades más sencillas como también puede referirse a un sin número de tareas más complejas y cotidianas que permitirán que nuestro día a día sea más cómodo y tranquilo.

Otro concepto muy relacionado con la domótica es el de “hogar digital”. Por el control de los electrodomésticos de nuestra casa a través del teléfono hasta la conexión de todas las habitaciones a los servicios multimedia y de comunicaciones disponibles hoy en día. Cuando juntamos la domótica con el hogar digital, nos encontramos con neveras que hacen las veces de centro de control de los aparatos de la casa y además nos sirve para mandar correos electrónicos o
buscar la receta para la comida del día. Cada vez se utiliza más el concepto de Hogar Digital de cara al consumidor, porque es más atractivo y más cercano [76].

Es importante recalcar que domótica no es lo mismo que casa inteligente. Mientras que la domótica aporta calidad de vida mediante la automatización de los sistemas, las viviendas inteligentes son las que tienen capacidad de tomar decisiones en función del conocimiento de los usos que hacen los habitantes de la casa. Según expertos “la domótica es un concepto obsoleto” [57]. Se dice que es un concepto obsoleto porque actualmente y sobre todo proyectándose hacia el futuro se espera que la gran gama tecnológica existente se pueda utilizar para gestionar y regular el flujo entre la casa y el entorno, incorporando comportamiento humano dentro de estos elementos, creando así espacios inteligentes dentro del hogar.

Existen algunas concepciones equivocadas entorno a las viviendas domóticas. Se piensa que ésta es solo para gente adinerada, si bien es cierto que una vivienda acomodada a las funciones de la domótica no es barata, tanto por la tecnología implementada como por las instalaciones, es posible empezar de a poco con tecnología simple, por ejemplo con lo básico como serían las iluminaciones. El sector de la domótica ha evolucionado considerablemente en los últimos años, actualmente ofrece una oferta más consolidada, aporta soluciones dirigidas a todo tipo de viviendas, incluidas las construcciones de vivienda oficial protegida. Además, se ofrecen más funcionalidades por menos dinero, más variedad de producto. Paralelamente, los instaladores de domótica han incrementado su nivel de formación y los modelos de implantación se han perfeccionado. Asimismo, los servicios posventa garantizan el perfecto mantenimiento de todos los sistemas [32].

Otro error habitual es que las personas creen que la interacción con los dispositivos es muy compleja, sin embargo la mayoría de estos equipos presentan una consola intuitiva, flexible, fácil de manejar que permite al usuario la programación y control de las tareas de forma rápida y segura, gracias a la evolución tecnológica, son más fáciles de usar y de instalar.

En definitiva, la domótica de hoy contribuye a aumentar la calidad de vida, hace más versátil la distribución de la casa, cambia las condiciones ambientales creando diferentes escenas predefinidas, y consigue que la vivienda sea más funcional al permitir desarrollar facetas domésticas, profesionales, y de ocio bajo un mismo techo.

La comunicación es el punto nodal de la casa inteligente, pues le deja tener el control de todos los dispositivos.
11.1. Aplicaciones

Vivienda domótica es aquella que permite una mayor calidad de vida a través de la tecnología, ofreciendo una reducción del trabajo doméstico, un aumento del bienestar y de la seguridad de sus habitantes, y una racionalización de los distintos consumos.

Figura 46. Visión global de una vivienda domótica

Existen 4 áreas en bien definidas donde la domótica está presente cambiando radicalmente nuestro día a día [36] [12].

1. **Confort**: conlleva todas las actuaciones que se puedan llevar a cabo que mejoren el confort en una vivienda. Dichas actuaciones pueden ser de carácter tanto pasivo, como activo o mixtas.
 - Iluminación: puede ser regulada en función del nivel de luminosidad ambiental, evitando su encendido innecesario o adaptándola a las necesidades del usuario. La activación de ésta se realiza siempre cuando el nivel de luminosidad pasa un determinado umbral, ajustable por parte del usuario. Esto garantiza un nivel de iluminación mínima, que puede ser esencialmente útil para por ejemplo un pasillo o la iluminación exterior.
La iluminación puede ser activada en función de la presencia de personas en la estancia. Se activa la iluminación cuando un sensor detecta presencia. Esto garantiza una buena iluminación para por ejemplo zonas de paso como pasillos. Asegura que luces no se quedan encendidas en habitaciones cuando no hace falta.

![Imagen de iluminación automática](image)

Figura 47. Control domótico de iluminación

- Automatización de todos los distintos sistemas/ instalaciones / equipos dotándolos de control eficiente y de fácil manejo, como accesos, persianas, toldos, ventanas, riego automático, etc.
- Integración del portero al teléfono, o del videoportero al televisor Control vía Internet.
- Gestión Multimedia y del ocio electrónicos.
- Generación de macros y programas de forma sencilla para el usuario y automatización.
- Vestidor virtual que permite digitalizar imágenes de la indumentaria que se encuentra en su interior, de manera tal de ir combinando y seleccionando desde un control remoto el mejor atuendo.
- Entretenimiento: Home Theater, videojuegos, LCD, lectores de DVD.

2. **Programación y Ahorro:** El ahorro energético no es algo tangible, sino un concepto al que se puede llegar de muchas maneras. En muchos casos no es necesario sustituir los aparatos o sistemas del hogar por otros que consuman menos sino una gestión eficiente de los mismos.
• Climatización y calderas: programación y zonificación, pudiéndose utilizar un termostato. Se pueden encender o apagar la caldera usando un control de enchufe, mediante telefonía móvil, fija, Wi-Fi o Ethernet.

• Control de toldos y persianas eléctricas, realizando algunas funciones repetitivas automáticamente o bien por el usuario manualmente mediante un mando a distancia:
 * Proteger automáticamente el toldo del viento, con un mismo sensor de viento que actúe sobre todos los toldos.
 * Protección automática del sol, mediante un mismo sensor de sol que actúe sobre todos los toldos y persianas.
 * Con un mando a distancia o control central se puede accionar un producto o agrupación de productos y activar o desactivar el funcionamiento del sensor.

• Gestión eléctrica:
 * Racionalización de cargas eléctricas: desconexión de equipos de uso no prioritario en función del consumo eléctrico en un momento dado.
 * Gestión de tarifas, derivando el funcionamiento de algunos aparatos a horas de tarifa reducida.

• Uso de energías renovables.

• Uso eficiente del agua. Además de contar con accesorios de bajo consumo de agua, operan en forma automática al cierre y apertura de las llaves alimentadoras. También se colocaron reguladores de temperatura en las regaderas de los baños, donde la demanda de agua caliente representa gastos excesivos.

3. Seguridad: Consiste en una red de seguridad encargada de proteger tanto los bienes patrimoniales, como la seguridad personal y la vida.

• Alarmas de intrusión: Se utilizan para detectar o prevenir la presencia de personas extrañas en una vivienda o edificio.
• Detección de un posible intruso (Detectores volumétricos o perimetrales).
• Cierre de persianas puntual y seguro.
• Simulación de presencia.

Figura 50. Cerraduras digitales. Si la huella está memorizada en el sistema y tiene permiso, la puerta se abre.

- Detectores y alarmas de incendios (detector de calor, detector de humo), detector de gas (fugas de gas, para cocinas no eléctricas), escapes de agua e inundación, concentración de monóxido de carbono en garajes cuando se usan vehículos de combustión.
- Alerta médica y teleasistencia.
- Acceso a cámaras IP.

4. Comunicaciones: Las aplicaciones de comunicaciones contemplan el intercambio de información, tanto entre personas como entre éstas y los equipos domésticos, ya sea dentro de la propia vivienda como desde ésta hacia el exterior. Existen dos aplicaciones muy utilizadas, y comúnmente incluidas en la mayoría de los sistemas domóticos [67].

- Activación remota por teléfono de equipos e instalaciones domésticas: como activar el sistema de seguridad, poner en marcha la calefacción o el aire acondicionado, activar la lavadora, etc.
- Envío hacia el exterior de cualquier alarma que se produzca en la vivienda: Cuando se produce una alarma en la vivienda (sea de tipo técnico como de intrusión o alerta médica), el sistema domótico realiza una llamada telefónica a un determinado número de abonados telefónicos (previamente programados) para avisar de lo ocurrido al usuario.

Como se ha mencionado las 4 áreas anteriores son los usos tradicionales que tiene la domótica, sin embargo actualmente se puede hablar de una quinta área donde la domótica está presente cada vez con mayor fuerza, adentrándose lentamente en una sociedad en donde existen necesidades diferentes, por
lo que se necesitan tecnologías diferentes.

5. **Accesibilidad**: Bajo este epígrafe se incluyen las aplicaciones o instalaciones de control remoto del entorno que favorecen la autonomía personal de personas con limitaciones funcionales, o discapacidad.

- Teléfonos con sensores visuales (luz de confirmación) y vibración para personas con discapacidad auditiva, y que a su vez, poseen teclas grandes y sonido para personas con discapacidad visual.
- Activación y desactivación de cualquier equipo del domicilio con un comando de voz, reduciendo el trabajo doméstico y los desplazamientos y facilitando el manejo de los dispositivos.
- Recepción de servicios de utilidad para personas con necesidades especiales, como telemedicina, mediante la conexión de dispositivos en el hogar que permiten la realización de pruebas sencillas (cheques, controles puntuales, atención de urgencias, tomas de tensión o medición de niveles) y el envío de los datos al hospital a través del PC.
- Teleasistencia a través de la contratación del equipamiento complementario en el domicilio, como alarmas que el usuario acciona en caso de peligro o teléfonos manos libres que le permiten hablar aún cuando se encuentre lejos del aparato.
- Sensores de posición y sistemas que, llevados por la persona dependiente, detectan si ésta se ha caído y realizan una llamada automática programada a un centro de servicios de teleasistencia, un familiar, vecino, etc.

Todas estas funcionalidades presentadas contribuyen notablemente a los discapacitados como también a las personas mayores, a continuación se mencionan los beneficios obtenidos de la domótica en el hogar de estas personas.

- Un mayor grado de autonomía e independencia, y la consecuente: reducción de la necesidad asistencial.
- Facilita el desarrollo y la integración social con nuevas y más económicas formas de telecomunicación.
- Facilita el desarrollo y la integración profesional, ya que muchas tareas, hoy en día, se pueden realizar mediante el teletrabajo.
- Mejora indirectamente de la autoestima personal y el deseo de mejora en procesos de rehabilitación.
- Ahorro económico para la Administración con la reducción de asistencia personal in situ.
- Disminución de la presión (psicológica y física) de las personas involucradas en el cuidado y la asistencia del individuo discapacitado [73].

11.2. Dispositivos en el mercado

- **Whirlpool Fireplace**: Es una mesa multifuncional sobre la cual los usuarios pondrán cualquier tipo de recipiente y el dispositivo lo calentará o enfriará en función del alimento que sea. Además informa por colores de su estado y temperatura. Todo se controla desde la chimenea inteligente que se coloca encima de la mesa.
• **Lockitron:** Sistema de apertura automática de puertas, un producto con el que podremos controlar remotamente el cerrojo de nuestra puerta estando incluso fuera de casa. Se trata de un complemento que se coloca sobre el cerrojo y que se encargará de controlar las visitas y proteger la vivienda cuando se desee, ya que a través de una aplicación podremos bloquear y desbloquear la puerta, recibir avisos de que la puerta ha sido abierta, abrir la puerta automáticamente cuando nos acerquemos e incluso saber cuándo alguien está llamando a la puerta. Todo ello es posible gracias a su conectividad WiFi, Bluetooth y NFC integrada.

Figura 51. Whirlpool Fireplace (CES 2013).

Figura 52. Lockitron.

Figura 53. Dacor Discovery IQ.

• **Dacor Discovery IQ:** Se trata de un horno con acceso a Internet y que viene con Android instalado. Cuenta con pantalla táctil de 7 pulgadas que además de cocinar permitirá una conexión vía Wi-Fi para poder leer el correo electrónico, acceder a las noticias, redes sociales, etc. Viene equipado con una CPU Samsung de 1Ghz, 512MB de RAM, 16Gb de memoria interna, sonido estereo y un procesador gráfico PowerVR SGX 540 [23].
11.3. Análisis tecnológico y social

El hombre actual tiene la necesidad de controlar todo lo que le rodea incluyendo cada una de las funciones de su vivienda desde cualquier lugar del mundo. La domótica permite realizar este control y monitoreo demandado, sin embargo como toda tecnología que se desarrolla con el objetivo de facilitar la vida al usuario, ofreciendo cada vez mayores mejoras y beneficios, también aparecen los peligros asociados a su utilización.

La implantación de un sistema domótico controlable a través de internet introduce vulnerabilidades al hogar ya que hace posible las intrusiones al mismo, sea invadiendo la privacidad y/o rastreando información que se pueda enviar por la red. Esta información puede dar a conocer los hábitos, costumbres, gustos de televisión, periodo de vacaciones de la familia que se podrían utilizar con fines perjudiciales, como por ejemplo dejar prendido los electrodomésticos malversando energía, utilizando las preferencias de entretenimiento para ofrecer anuncios, propagandas, etc. Esto implica que todos los involucrados en brindar el servicio de domótica deben tener a la seguridad como premisa primera antes que el servicio a dar. Por involucrados se habla de los fabricantes de los equipos, de los instaladores y del usuario final.

Por otro lado la automatización de muchas de las tareas que hoy en día la mayoría de las personas todavía la realizan de forma "manual" como presionar el interruptor para encender/apagar las luces, regar el pasto del patio con la manguera, enchufar/desenchufar los electrodomésticos, etc, puede llevar a un entorpecimiento del usuario debido al alto grado de dependencia de dicha automatización. Si bien es cierto que el fin de la domótica es elevar el nivel de calidad de vida de los usuarios, hoy en día las viviendas y edificios domóticos o inteligentes no son muy comunes, por lo que los hábitos adquiridos en el hogar podrían no adecuarse fuera de ella. También relacionado a la dependencia y sobre todo a las facilidades otorgadas por la domótica puede producirse el aislamiento del usuario, quien todo lo controla presionando unos cuantos botones.

Sin embargo es una realidad que la domótica modificará el estilo de vida de las personas en la medida en que éstas asuman las aplicaciones ofertadas. Los jóvenes, quienes están más familiarizados con la cultura digital son los grupos más receptivos a las nuevas tecnologías ya que tienen hábitos que les permiten asimilar mejor las innovaciones tecnológicas, no así el sector mayor cuyo escepticismo frente a los inventos es creciente a medida que la persona madura, a pesar de que en las últimas décadas esto se ha ido reduciendo. Lo importante recalcar es que la incorporación de nuevas tecnologías en el hogar o en cualquier otro ámbito no es mala en sí misma, pues constituye un instrumento al servicio de las personas, lo malo aparece del uso irresponsable que se hace de las mismas.

Todas estas tecnologías están disponibles en el mercado, finalmente depende del usuario adquirirlas o no, anteponiendo los beneficios obtenidos o los riesgos
corridos, pero lo que para algunos implica elevar la calidad de vida para otro gran sector implica autonómia personal. La domótica aplicada a favorecer la accesibilidad es un reto ético y creativo pero sobre todo es la aplicación de la tecnología en el campo más necesario, para suplir limitaciones funcionales de las personas, incluyendo las personas discapacitadas o mayores. Actualmente se maneja el concepto de diseño para todos el cual es un movimiento que pretende crear la sensibilidad necesaria para que al diseñar un producto o servicio se tengan en cuenta las necesidades de todos los posibles usuarios, y este es un aspecto sobre el cual vale la pena insistir pues gracias a la diversidad, personas que habitan en soledad y tienen problemas de movilidad, logran tener una mayor comunicación con el exterior, mayor seguridad y sobre todo bienestar físico, social y emocional.

11.4. Futuro de la domótica

Las primeras máquinas electrónicas eran sumamente costosas, veinte años más tarde la introducción del circuito integrado permitió el abaratamiento de las computadoras, hoy la adquisición de una computadora de escritorio o una notebook está al alcance de todos. Si la misma historia se repite con la domótica, ésta podría implantarse paulatinamente y no debería suponer un cambio radical en la concepción del hogar, sino que el uso de los dispositivos automáticos poco a poco debería ser algo habitual y natural, no se debería otorgar una importancia excesiva a los aparatos, ya que finalmente existen para hacer la vida más sencilla.

Podría darse el caso en que la construcción de viviendas domóticas o la instalación de sistemas domóticos sea tan común que muchas de las tecnologías que hoy conocemos desaparezcan, así como algunas de las aplicaciones ya existentes desaparezcan por su falta de demanda. También es posible que la domótica no llegue más allá de los hogares de las clases con mayor poder adquisitivo, como ocurre actualmente, en cuyo caso se tendría una sociedad diferenciada en la cual hombres y mujeres se verán afectados por inventos que revolucionarían el uso de sus casas y cuya adquisición dependería de factores económicos, posición social, sexo, etc.

¿Existen límites para la domótica? Para contestar esta pregunta volvamos a su definición: “Vivienda domótica es aquella que permite una mayor calidad de vida a través de la tecnología, ofreciendo una reducción del trabajo doméstico, un aumento del bienestar y de la seguridad de sus habitantes, y una racionalización de los distintos consumos.” Toda tecnología lanzada al mercado que cubra al menos uno de estos objetivos será bien recibida por los usuarios, aunque finalmente lo que decidirá su popularidad será la competencia, la innovación y la creatividad de la misma.
12. Conclusión

La evolución vertiginosa de la tecnología en las últimas décadas a muchos nos resulta maravillosa y nos roba el aliento. En tan corto tiempo los avances aumentaron drásticamente y las aplicaciones solo crecen y crecen, ayudando a mejorar la calidad de vida de las personas en muchos aspectos: acceso a la información, comunicación, educación, medicina, entretenimiento, etc. Cierto es que con las nuevas tecnologías surgen problemas (privacidad, daños al medio ambiente, guerras, etc.), no por eso debemos dejar de intentar. Se deben buscar soluciones a las problemáticas que van surgiendo y dar lo mejor de nosotros mismos.

Las personas deben tomar conciencia sobre los peligros que corren cuando ellas mismas se exponen ya sea consciente o inconscientemente, dejando que sus datos estén disponibles en la red, o dando su información a personas cuyo origen desconocen o no están seguros. Informarse sobre los dispositivos que utilizan y utilizarlos de la mejor manera posible.

En definitiva, las Interfaces Humano-Máquina influyen en nuestra vida cotidiana, modificando cómo nos relacionamos con los demás con consecuencias distintas en diferentes comunidades según la cultura, valores, educación y otros factores socio-ambientales. Estructuras urbanas y de pensamiento serán modificadas según los valores con las que las tecnologías sean desarrolladas. La predicción es difícil de hacer, por ahora trabajemos sobre el análisis de nuestras experiencias.

13. Anexos

13.1. Seguridad

Tomando inspiración del juego Watch Dogs lanzado en 2014, nace el cuestionamiento de si el universo del juego es posible. Ambientado en un futuro cercano donde una red de computadores conecta todo a todos, controla casi toda la tecnología y la información de la ciudad en que se desarrolla en juego, además de la información privada de los habitantes. El juego explora el impacto de la tecnología en la sociedad moderna. Usando la tecnología de la ciudad como arma, el protagonista se pone como misión administrar justicia por mano propia, básicamente “hackea” el sistema para usar sus recursos para lograr su objetivo. Utiliza su smartphone o una computadora para controlar el celular de otras personas, ATMs, cámaras de seguridad, automóviles, etc [7].

Un análisis realizado por Jake Roper en el canal Vsauce3 discute este planteamiento realizando una comparación con la tecnología actual y los ataques de seguridad ocurridos a través del tiempo en distintos ámbitos.

- CCTV. Online se encuentran streamings de cámaras de seguridad públicas de comercios y ciudades. En algunos casos se las puede incluso controlar.
Además en algunas partes del mundo se ofrecen trabajos de vigilancia para mejorar la seguridad de comercios.

- **Metadatos.** Algunas aplicaciones de celular como la del clima, manejan información no encriptada y de fácil acceso, si por ejemplo una persona está conectada a una red pública y en esa red una máquina está en modo promiscuo y capta sus paquetes podría obtener información como nombre completo y dirección de correo electrónico.

- **Drones** en lugares públicos para monitorear y/o ‘espiar’ para recolectar información de personas que están con sus celulares en parques, cafés, etc.

- **Cuantos más nos conectamos con los dispositivos nos acercamos al Internet of Things.** La segunda generación de internet donde la información es creada no solo por personas sino también por cosas: heladeras, balanzas, o cosas más peligrosas como armas controladas remotamente, marcapasos que envían la información de los pacientes por medio de WiFi.

- **Barnaby Jack** un conocido del mundo hacker por hackear ATMs (cajeros automáticos). En 2013 encontró una vulnerabilidad de los marcapasos.

- **Automóviles** con dispositivos incorporados para ser controlados remotamente como los de Google, se podrían deshabilitar los frenos, girar el volan-
te en cualquier dirección, apagar el motor, mostrar información falsa en el
tablero como tanque de gasolina lleno, cuando en realidad no es cierto. El
Motherboard Documentary realiza una demostración de esto.

• **Otras formas de hacking.** Algunos celulares cuentan con acelerómetro, el
cual detecta la velocidad y orientación del dispositivo. Se descubrió que si se
coloca el celular sobre una mesa cerca de un teclado de computadora, me-
diante el acelerómetro del celular se podía detectar lo que la persona estaba
escribiendo en el teclado a través de las vibraciones transmitidas por la mesa,
concepto parecido al de **skinput.** Esto podría resultar difícil de llevar a cabo
y lleva tiempo.

• **Kevin Mitnick.** Utilizaba **ingeniería social** para manipular a las perso-
as, convencerlas por teléfono y obtener información que normalmente no
expondrían. En su libro explica que más allá de las técnicas de hardware y
software, el factor determinante de la seguridad de las mismas es la capaci-
dad de los usuarios de interpretar correctamente las políticas de seguridad
y hacerlas cumplir. Todos podemos fallar en este aspecto, y con ayuda de
un teléfono seguir unos pasos basados en principios básicos comunes a todos:

1. Todos queremos ayudar.
2. El primer movimiento es siempre de confianza hacia el otro.
3. No nos gusta decir NO.
4. A todos nos gusta que nos alaben.

Se concluye que en la actualidad pueden ocurrir situaciones como en el juego
Watch Dogs pero serían muy difícil de lograr, ya sea por capacidad de procesa-
miento y teóricamente, se necesitan muchos conocimientos. Aun así las personas
somos propensas a ser “hackeadas” gracias a la manipulación y el uso de la
ingeniería social.

13.2. **Ciencia tecnología y Sociedad**

Los estudios sociales sobre ciencia, tecnología, y sociedad “**tratan de cómo los
valores sociales, políticos, y culturales, afectan a la investigación científica y a la
innovación tecnológica, y de cómo éstas, al mismo tiempo, afectan a la sociedad,
a la política y a la cultura”**. El desarrollo tecnológico que sirve de base para la
producción y divulgación del conocimiento es desigual, ha acentuado mucho más
las diferencias económicas y sociales entre los países [66].

Toda la sociedad se ve afectada por el avance de la tecnología, mejorando
la calidad de vida, sirviendo de herramienta para el trabajo, entretenimiento y
comunicación. Pero existen consecuencias al uso indiscriminado y la franja de
edad vulnerable a estas consecuencias son los niños y adolescentes. Entre ellas
se habla de “los efectos nocivos y altamente perjudiciales que las computadoras, Internet, el acceso a las redes sociales, y demás tipos de videojuegos tienen sobre los niños. Formación de adicciones, aislamiento social, contactos precoces con la pornografía, generación e instauración de un desinterés generalizado, bajo rendimiento escolar, falta de atención o concentración, baja tolerancia a la frustración, etc.”

Se habla de la generación de **Nativos Digitales**, niños que estarán más determinados por su inclusión en las redes que por sus lugares tradicionales como familia y colegio. Aunque esto ya está ocurriendo ahora y lo podemos observar en encuentros sociales donde las personas le prestan más atención a sus celulares que a las personas con las que están compartiendo en el momento [78].

Cambia la estructura del pensamiento, esto no se sabe o no se puede predecir si es bueno o malo pero se puede aspirar a lograr un análisis de lo que está ocurriendo en la actualidad.

Una consecuencia del uso indiscriminado de la tecnología es el trastorno de sueño, el ritmo circadiano de las personas se ve afectado. Genera padecimientos que afectan el ciclo vigilia/sueño. Estos padecimientos pueden ser graves aquejando el desempeño y funcionamiento físico, emocional y mental de una persona.

Abordando otro tema social tenemos la **Ingeniería social**. El principio que sustenta la ingeniería social es el que en cualquier sistema “los usuarios son el eslabón débil”. En la práctica, un ingeniero social usará comúnmente el teléfono o Internet para engañar a la gente, fingiendo ser, por ejemplo, un empleado de algún banco o alguna otra empresa, un compañero de trabajo, un técnico o un cliente [39].

Las personas conocen a otras en internet todo el tiempo y están expuestas a ser manipuladas, ya sea para obtener información valiosa de ellas o por simple diversión de otras personas malintencionadas. Esto puede dar miedo porque todos estamos expuestos, pero la principal defensa contra esto es educar. Esto puede ser educando en la casa, escuelas hasta entrenando a usuarios de una empresa en el uso de las políticas de seguridad y asegurarse de que sean seguidas.

Las empresas hacen uso de la tecnología, por ejemplo redes sociales, para controlar y manipular al consumidor creando necesidades que no existían por medio de campañas publicitarias basándose en principios de ingeniería social, para ofrecer/vender sus productos. El problema con esto es el consumismo, las personas viven con el fin de tener cosas que no necesitan, en una competencia constante por tener lo último o novedoso del mercado.
Referencias

49. Verónica Felipe Aznar. La distopía de las relaciones interpersonales. REVISTA DE COMUNICACIÓN Y NUEVAS TECNOLOGÍAS, 2, 2010.